Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(12): 125201    DOI: 10.1088/1674-1056/26/12/125201
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Effects of gas pressure on plasma characteristics in dual frequency argon capacitive glow discharges at low pressure by a self-consistent fluid model

Lu-Lu Zhao(赵璐璐)1,2, Yue Liu(刘悦)1, Tagra Samir1
1. Key Laboratory of Materials Modification by Laser, Ion and Electron Beams(Ministry of Education), School of Physics, Dalian University of Technology, Dalian 116024, China;
2. School of Information Science and Engineering, Dalian Polytechnic University, Dalian 116034, China
Abstract  A self-consistent fluid model for dual radio frequency argon capacitive glow discharges at low pressure is established. Numerical results are obtained by using a finite difference method to solve the model numerically, and the results are analyzed to study the effect of gas pressure on the plasma characteristics. It shows that when the gas pressure increases from 0.3 Torr (1 Torr=1.33322×102 Pa) to 1.5 Torr, the cycle-averaged plasma density and the ionization rate increase; the cycle-averaged ion current densities and ion energy densities on the electrodes electrode increase; the cycle-averaged electron temperature decreases. Also, the instantaneous electron density in the powered sheath region is presented and discussed. The cycle-averaged electric field has a complex behavior with the increasing of gas pressure, and its changes take place mainly in the two sheath regions. The cycle-averaged electron pressure heating, electron ohmic heating, electron heating, and electron energy loss are all influenced by the gas pressure. Two peaks of the electron heating appear in the sheath regions and the two peaks become larger and move to electrodes as the gas pressure increases.
Keywords:  dual frequency      gas pressure      glow discharge  
Received:  29 June 2017      Revised:  30 August 2017      Accepted manuscript online: 
PACS:  52.25.Jm (Ionization of plasmas)  
  52.30.Ex (Two-fluid and multi-fluid plasmas)  
  52.50.Qt (Plasma heating by radio-frequency fields; ICR, ICP, helicons)  
  52.65.-y (Plasma simulation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51172101).
Corresponding Authors:  Yue Liu     E-mail:  liuyue@dlut.edu.cn

Cite this article: 

Lu-Lu Zhao(赵璐璐), Yue Liu(刘悦), Tagra Samir Effects of gas pressure on plasma characteristics in dual frequency argon capacitive glow discharges at low pressure by a self-consistent fluid model 2017 Chin. Phys. B 26 125201

[1] Kim H C, Lee J K and Shon J W 2003 Phys. Plasmas 10 4545
[2] Lieberman M A and Lichtenberg A J 1994 Principles of Plasma Discharges and Material Processing (New York:Wiley)
[3] Kim H C and Lee J K 2005 Phys. Plasmas 12 053501
[4] Georgieva V and Bogaerts A 2005 J. Appl. Phys. 98 023308
[5] Kawamura E, Lieberman M A and Lichtenberg A J 2006 Phys. Plasmas 13 053506
[6] Liu Y X, Zhang Q Z, Jiang W, Hou L J, Jiang X Z, Lu W Q and Wang Y N 2011 Phys. Rev. Lett. 107 055002
[7] Lisovskiy V, Booth J P, Landry K, Douai D, Cassagne V and Yegorenkov V 2008 Plasma Sources Sci. Technol. 17 025002
[8] Schulze J, Schüngel E, Czarnetzki U and Donkó Z 2009 J. Appl. Phys. 106 063307
[9] Kim D B, Moon S Y and Jung H, Gweon B and Choec W 2010 Phys. Plasmas 17 053508
[10] Li Z C, Chang D L, Li X S, Bi Z H, Lu W Q, Xu Y, Zhu A M and Wanga Y N 2010 Phys. Plasmas 17 033501
[11] Jiang X Z, Liu Y X, Lu W Q, Bi Z H, Gao F and Wang Y N 2012 Vacuum 86 881
[12] Yu Y Q, Xin Y, Lu W Q and Ning Z Y 2011 Plasma Sci. Technol. 13 571
[13] Jiang W, Mao M and Wang Y N 2006 Phys. Plasmas 13 113502
[14] Bora B 2015 Phys. Plasmas 22 103503
[15] Wang S, Xu X and Wang Y N 2007 Phys. Plasmas 14 113501
[16] Schulze J, Derzsi A and Donkó Z 2011 Plasma Sources Sci. Technol. 20 045008
[17] Dai Z L, Xu X and Wang Y N 2007 Phys. Plasmas 14 013507
[18] Donkó Z and Petrovic Z L 2007 J. Phys.:Conf. Ser. 86 012011
[19] Bi Z H, Dai Z L, Xu X, Li Z C and Wang Y N 2009 Phys. Plasmas 16 043510
[20] Zhang Q Z, Liu Y X, Jiang W, Bogaerts A and Wang Y N 2013 Plasma Sources Sci. Technol. 22 025014
[21] Yuan Q H, Xin Y, Yin G Q, Huang X J, Sun K and Ning Z Y 2008 J. Phys. D:Appl. Phys. 41 205209
[22] Yuan Q H, Yin G Q, Xin Y and Ning Z Y 2011 Phys. Plasmas 18 053501
[23] Lymberopoulos D P and Economou D J 1993 J. Appl. Phys. 73 3668
[24] Liu Q, Liu Y, Samir T and Ma Z S 2014 Phys. Plasmas 21 083511
[25] Lafleur T, Chabert P and Booth J P 2014 Plasma Sources Sci. Technol. 23 035010
[26] Gahan D and Hopkins M B 2006 J. Appl. Phys. 100 043304
[27] Turner M M and Chabert P 2006 Phys. Rev. Lett. 96 205001
[28] Schulze J, Derzsi A, Dittmann K, Hemke T, Meichsner J and Donko'Z 2011 Phys. Rev. Lett. 107 275001
[29] Belenguer P and Boeuf J P 1990 Phys. Rev. A 41 4447
[30] Liu R Q, Liu Y, Jia W Z and Zhou Y W 2017 Phys. Plasmas 24 013517
[31] Semmler E, Awakowicz P and Keudell A V 2007 Plasma Sources Sci. Technol. 16 839
[1] Effects of secondary electron emission on plasma characteristics in dual-frequency atmospheric pressure helium discharge by fluid modeling
Yi-Nan Wang(王一男), Shuai-Xing Li(李帅星), Yue Liu(刘悦), Li Wang(王莉). Chin. Phys. B, 2019, 28(2): 025202.
[2] Pressure dependent modulation instability in photonic crystal fiber filled with argon gas
He-Lin Wang(王河林), Ai-Jun Yang(杨爱军), XiaoLong Wang(王肖隆), Bin Wu(吴彬), Yi Ruan(阮乂). Chin. Phys. B, 2018, 27(9): 094221.
[3] Factors affecting improvement of fluorescence intensity of quartet and doublet state of NO diatomic molecule excited by glow discharge
Ahmed Asaad I Khalil, Reem Al-Tuwirqi, Mohammed A Gondal, Noura Al-Suliman. Chin. Phys. B, 2018, 27(8): 085202.
[4] Numerical study on discharge characteristics influenced by secondary electron emission in capacitive RF argon glow discharges by fluid modeling
Lu-Lu Zhao(赵璐璐), Yue Liu(刘悦), Tagra Samir. Chin. Phys. B, 2018, 27(2): 025201.
[5] Numerical study on the gas heating mechanism in pulse-modulated radio-frequency glow discharge
Qi Wang(王奇), Xiao-Li Yu(于晓丽), De-Zhen Wang(王德真). Chin. Phys. B, 2017, 26(3): 035201.
[6] Effect of driving frequency on electron heating in capacitively coupled RF argon glow discharges at low pressure
Tagra Samir, Yue Liu(刘悦), Lu-Lu Zhao(赵璐璐), Yan-Wen Zhou(周艳文). Chin. Phys. B, 2017, 26(11): 115201.
[7] Characteristics of dual-frequency capacitively coupled SF6/O2 plasma and plasma texturing of multi-crystalline silicon
Xu Dong-Sheng (徐东升), Zou Shuai (邹帅), Xin Yu (辛煜), Su Xiao-Dong (苏晓东), Wang Xu-Sheng (王栩生). Chin. Phys. B, 2014, 23(6): 065201.
[8] Nitriding molybdenum: Effects of duration and fill gas pressure when using 100-Hz pulse DC discharge technique
U. Ikhlaq, R. Ahmad, M. Shafiq, S. Saleem, M. S. Shah, T. Hussain, I. A. Khan, K. Abbas, M. S. Abbas. Chin. Phys. B, 2014, 23(10): 105203.
[9] Analysis of influence of RF power and buffer gas pressure on sensitivity of optically pumped cesium magnetometer
Shi Rong-Ye (石荣晔), Wang Yan-Hui (王延辉). Chin. Phys. B, 2013, 22(10): 100703.
[10] Simulation of transition from Townsend mode to glow discharge mode in a helium dielectric barrier discharge at atmospheric pressure
Li Xue-Chen(李雪辰), Niu Dong-Ying(牛东莹), Xu Long-Fei(许龙飞), Jia Peng-Ying(贾鹏英), and Chang Yuan-Yuan(常媛媛) . Chin. Phys. B, 2012, 21(7): 075204.
[11] Surface modification of polytetrafluoroethylene film using single liquid electrode atmospheric- pressure glow discharge
Zhou Lan(周澜), Lü Guo-Hua(吕国华), Chen Wei(陈维), Pang Hua(庞华), Zhang Gu-Ling(张谷令), and Yang Si-Ze(杨思泽) . Chin. Phys. B, 2011, 20(6): 065206.
[12] Characterizing uniform discharge in atmospheric helium by numerical modelling
Lü Bo(吕博), Wang Xin-Xin(王新新), Luo Hai-Yun(罗海云), and Liang Zhuo(梁卓). Chin. Phys. B, 2009, 18(2): 646-651.
[13] Numerical studies of atmospheric pressure glow discharge controlled by a dielectric barrier between two coaxial electrodes
Zhang Hong-Yan(张红艳), Wang De-Zhen(王德真), and Wang Xiao-Gang(王晓钢). Chin. Phys. B, 2007, 16(4): 1089-1096.
[14] Simulation of radio-frequency atmospheric pressure glow discharge in $\gamma$ mode
Shang Wan-Li(尚万里), Wang De-Zhen(王德真), and Michael G. Kong. Chin. Phys. B, 2007, 16(2): 485-492.
[15] Spatial distribution of electron characteristic in argon rf glow discharges
Zhu Zu-Song (祝祖送), Lin Kui-Xun (林揆训), Lin Xuan-Ying (林璇英), Qiu Gui-Ming (邱桂明), Yu Yun-Peng (余云鹏), Luo Yi-Lin (罗以琳). Chin. Phys. B, 2006, 15(5): 969-974.
No Suggested Reading articles found!