Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(2): 020505    DOI: 10.1088/1674-1056/28/2/020505
GENERAL Prev   Next  

One-dimensional mass transport with dynamic external potentials

Xingxing Zhang(张星星), Dongqin Zheng(郑冬琴), Weirong Zhong(钟伟荣)
Siyuan Laboratory, Department of Physics, Jinan University, Guangzhou 510632, China
Abstract  Using non-equilibrium molecular dynamics and the Monte Carlo method, we simulated mass transport in a one-dimensional channel with dynamic external potentials. This study focuses on the influence of the dynamic external potential field on the mass transport. Traveling wave and standing wave potential fields have been employed as our dynamic potential field. We found that mass transport can be promoted by the traveling wave field when the external potential moves along the direction of the mass current. When the standing wave field is exerted on the channel, the channel is found to work like a switch. The mass current can be “on” or “off” by adjusting the standing wave frequency. The effects of the period number, the amplitude and the velocity of the external potential on the mass transport are also discussed. Our research provides valuable advice for the control o particle transport through one-dimensional channels.
Keywords:  dynamic external potentials      traveling wave      standing wave      mass transport  
Received:  01 November 2018      Revised:  12 December 2018      Accepted manuscript online: 
PACS:  05.60.Cd (Classical transport)  
  66.10.cg (Mass diffusion, including self-diffusion, mutual diffusion, tracer diffusion, etc.)  
  47.60.Dx (Flows in ducts and channels)  
  47.61.-k (Micro- and nano- scale flow phenomena)  
Fund: Project supported by the Natural Science Foundation of Guangdong Province, China (Grant No. 2014A030313367).
Corresponding Authors:  Dongqin Zheng, Weirong Zhong     E-mail:  zhengdq@jnu.edu.cn;wrzhong@hotmail.com

Cite this article: 

Xingxing Zhang(张星星), Dongqin Zheng(郑冬琴), Weirong Zhong(钟伟荣) One-dimensional mass transport with dynamic external potentials 2019 Chin. Phys. B 28 020505

[1] Brennan M E, Coleman J N, Panhuis M I H, Marty L, Byrne H J and Blau W J 2001 Synth. Met. 119 641
[2] Wen J L, Zheng D Q and Zhong W R 2015 Rsc Adv. 5 99573
[3] Pan H, Li J Y and Feng Y P 2010 Nanoscale Res. Lett. 5 654
[4] Chen P R, Xu Z C, Gu Y and Zhong W R 2016 Chin. Phys. B 25 086601
[5] He J h, Wen J L, Chen P R, Zheng D Q and Zhong W R 2017 Chin. Phys. B 26 070502
[6] Zhou X Y, Wu F M, Kou J L, Nie X C, Liu Y and Lu H J 2013 J. Phys. Chem. B 117 11681
[7] Shen L, Xu Z, Zhou Z W and Hu G H 2014 Chin. Phys. B 23 118201
[8] Peng B and Yu Y X 2008 Langmuir 24 12431
[9] Yu Y X and Wu J 2003 J. Chem. Phys. 119 2288
[10] Xin Y, Zheng Y X and Yu Y X 2016 Mol. Phys. 114 2328
[11] Sun M H and Zhang X R 2018 Int. J. Heat Mass Transfer 122 150
[12] Wang S M, Yu Y X and Gao G H 2006 J. Membr. Sci. 271 140
[13] Pavliotis G A and Vogiannou A 2008 Fluct. Noise Lett. 8 L155
[14] Lindenberg K, Sancho J M, Lacasta A M and Sokolov I M 2007 Phys. Rev. Lett. 98 020602
[15] Wang F, Deng C, Tu Z and Ma H 2013 Acta Phys. Sin. 62 040501 (in Chinese)
[16] Bai Z W and Zhang W 2018 Chem. Phys. 500 62
[17] Mbemmo A M F, Kenmoe G D and Kofane T C 2017 Fluct. Noise Lett. 16 1750011
[18] Spagnolo B and Dubkov A 2006 Eur. Phys. J. B 50 299
[19] Spiechowicz J and Luczka J 2015 Phys. Rev. E 91 062104
[20] Chatterjee R, Chatterjee S, Pradhan P and Manna S S 2014 Phys. Rev. E 89 022138
[21] Bandyopadhyay M, Dattagupta S and Sanyal M 2006 Phys. Rev. E 73 051108
[22] Sandor C, Libal A, Reichhardt C and Reichhardt C J O 2017 Phys. Rev. E 95 012607
[23] Benichou O, Illien P, Oshanin G, Sarracino A and Voituriez R 2014 Phys. Rev. Lett. 113 268002
[24] Marconi U M B, Puglisi A, Rondoni L and Vulpiani A 2008 Phys. Rep. 461 111
[25] Seifert U 2012 Rep. Prog. Phys. 75 126001
[26] Chou T, Mallick K and Zia R K P 2011 Rep. Prog. Phys. 74 116601
[27] Chetrite R, Falkovich G and Gawedzki K 2008 J. Stat. Mech. P08005
[28] Gmachowski L 2018 Eur. Biophys. J. 47 309
[29] Lindner B and Sokolov I M 2016 Phys. Rev. E 93 042106
[30] Zhou X Y, Wu F M, Liu Y, Kou J L, Lu H and Lu H J 2015 Phys. Rev. E 92 053017
[31] Dunlop J, Bowlby M, Peri R, Vasilyev D and Arias R 2008 Nat. Rev. Drug Disc. 7 358
[32] Allena T W, Bliznyuk A, Rendell A P, Kuyucak S and Chung S H 2000 J. Chem. Phys. 112 8191
[33] Mashl R J, Tang Y Z, Schnitzer J and Jakobsson E 2001 Biophys. J. 81 2473
[34] Oh Y, Kim J, Yethiraj A and Sung B J 2016 Phys. Rev. E 93 012409
[1] Spatial and spectral filtering of tapered lasers by using tapered distributed Bragg reflector grating
Jing-Jing Yang(杨晶晶), Jie Fan(范杰), Yong-Gang Zou(邹永刚),Hai-Zhu Wang(王海珠), and Xiao-Hui Ma(马晓辉). Chin. Phys. B, 2022, 31(8): 084203.
[2] Nonlinear dynamical wave structures of Zoomeron equation for population models
Ahmet Bekir and Emad H M Zahran. Chin. Phys. B, 2022, 31(6): 060401.
[3] Forward-wave enhanced radiation in the terahertz electron cyclotron maser
Zi-Chao Gao(高子超), Chao-Hai Du(杜朝海), Fan-Hong Li(李繁弘), Zi-Wen Zhang(张子文), Si-Qi Li(李思琦), and Pu-Kun Liu(刘濮鲲). Chin. Phys. B, 2022, 31(12): 128401.
[4] Lagrangian analysis of the formation and mass transport of compressible vortex rings generated by a shock tube
Haiyan Lin(林海燕), Yang Xiang(向阳, Hong Liu(刘洪), and Bin Zhang(张斌). Chin. Phys. B, 2021, 30(3): 030501.
[5] Novel traveling wave solutions and stability analysis of perturbed Kaup-Newell Schrödinger dynamical model and its applications
Xiaoyong Qian(钱骁勇), Dianchen Lu(卢殿臣), Muhammad Arshad, and Khurrem Shehzad. Chin. Phys. B, 2021, 30(2): 020201.
[6] Radiation force and torque on a two-dimensional circular cross-section of a non-viscous eccentric layered compressible cylinder in acoustical standing waves
F G Mitri. Chin. Phys. B, 2021, 30(2): 024302.
[7] Study on dispersion characteristics of terahertz waves in helical waveguides
Jin-Hai Sun(孙金海), Shao-Hua Zhang(张少华), Xu-Tao Zhang(张旭涛), He Cai(蔡禾), Yong-Qiang Liu(刘永强), and Zeng-Ming Chao(巢增明)$. Chin. Phys. B, 2020, 29(11): 114301.
[8] Bifurcation analysis and exact traveling wave solutions for (2+1)-dimensional generalized modified dispersive water wave equation
Ming Song(宋明)†, Beidan Wang(王贝丹), and Jun Cao(曹军). Chin. Phys. B, 2020, 29(10): 100206.
[9] Dynamics of traveling wave solutions to a highly nonlinear Fujimoto-Watanabe equation
Li-Juan Shi(师利娟), Zhen-Shu Wen(温振庶). Chin. Phys. B, 2019, 28(4): 040201.
[10] Dynamical behaviors of traveling wave solutions to a Fujimoto-Watanabe equation
Zhen-Shu Wen(温振庶), Li-Juan Shi(师利娟). Chin. Phys. B, 2018, 27(9): 090201.
[11] Dense pair plasma generation and its modulation dynamics in counter-propagating laser field
Wei-Yuan Liu(刘维媛), Wen Luo(罗文), Tao Yuan(袁韬), Ji-Ye Yu(余继晔), Min Chen(陈民). Chin. Phys. B, 2018, 27(10): 105202.
[12] Thermal emission properties of one-dimensional grating with different parameters
Weixin Lin(林伟新), Guozhou Li(李国洲), Qiang Li(李强), Hongjin Hu(胡宏锦), Fang Han(韩防), Fanwei Zhang(张樊伟), Lijun Wu(吴立军). Chin. Phys. B, 2017, 26(5): 057301.
[13] Homotopic mapping solitary traveling wave solutions for the disturbed BKK mechanism physical model
Zhou Xian-Chun (周先春), Shi Lan-Fang (石兰芳), Han Xiang-Lin (韩祥临), Mo Jia-Qi (莫嘉琪). Chin. Phys. B, 2014, 23(9): 090204.
[14] On the exact solutions to the long–short-wave interaction system
Fan Hui-Ling (范慧玲), Fan Xue-Fei (范雪飞), Li Xin (李欣). Chin. Phys. B, 2014, 23(2): 020201.
[15] Novel loop-like solitons for generalized Vakhnenko equation
Zhang Min (张旻), Ma Yu-Lan (马玉兰), Li Bang-Qing (李帮庆). Chin. Phys. B, 2013, 22(3): 030511.
No Suggested Reading articles found!