Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(1): 017802    DOI: 10.1088/1674-1056/28/1/017802
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

First-principles study on optic-electronic properties of doped formamidinium lead iodide perovskite

Xin-Feng Diao(刁心峰)1,2, Yan-Lin Tang(唐延林)3, Quan Xie(谢泉)1
1 School of Big Data and Information Engineering, Guizhou University, Guiyang 550025, China;
2 School of Physics and Electronic Sciences, Guizhou Normal College, Guiyang 550018, China;
3 School of Physics, Guizhou University, Guiyang 550025, China
Abstract  

We have discussed the materials of solar cell based on hybrid organic-inorganic halide perovskites with formamidinium (NH2CH=NH2+ or FA) lead iodide. Firstly, we build the structure of formamidinium lead iodide (FAPbI3) by using the material studio. By using the first-principles calculations, the energy band structure, density of states (DOS), and partial DOS (PDOS) of the hydrazine-iodide lead halide are obtained. Then, we theoretically analyze a design scheme for perovskite solar cell materials, published in[Science 354, 861 (2016)], with the photoelectric conversion efficiency that can reach 20.3%. Also, we use non-toxic elements to replace lead in FAPbI3 without affecting its photoelectric conversion efficiency. Here in this work, we explore the energy band structure, lattice constant, light absorption efficiency, etc. After the Ca, Zn, Ge Sr, Sn, and Ta atoms replacing lead (Pb) and through comparing the spectral distributions of the solar spectrum, it can be found that FAGeI3, FASnI3, and FAZnI3 have better absorbance characteristics in the solar spectrum range. If the band gap structure is taken into account, FAGeI3 will become an ideal material to replace FAPbI3, although its performance is slightly lower than that of FAPbI3. The toxicity of Pb is taken into account, and the Ge element can be used as a substitute element for Pb. Furthermore, we explore one of the perovskite materials, i.e., FA0.75Cs0.25Sn0.25Ge0.75I3 whose photovoltaic properties are close to those of FA0.75Cs0.25Sn0.5Pb0.5I3, but the former does not contain toxic atoms. Our results pave the way for further investigating the applications of these materials in relevant technologies.

Keywords:  perovskite      band structure      optic-electronic properties      solar cell  
Received:  12 October 2018      Revised:  06 November 2018      Accepted manuscript online: 
PACS:  78.56.-a (Photoconduction and photovoltaic effects)  
  81.05.Fb (Organic semiconductors)  
  42.50.Nn (Quantum optical phenomena in absorbing, amplifying, dispersive and conducting media; cooperative phenomena in quantum optical systems)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 11164004), the Industrial Research Project of Guizhou Province, China (Grant No. GY[2012]3060), the Project of Education Department of Guizhou Province, China (Grant No. [2016]215), and the Special Laboratory Fund of Education Department of Guizhou Province, China (Grant No. GY[2014]217).

Corresponding Authors:  Yan-Lin Tang     E-mail:  tylgzu@163.com

Cite this article: 

Xin-Feng Diao(刁心峰), Yan-Lin Tang(唐延林), Quan Xie(谢泉) First-principles study on optic-electronic properties of doped formamidinium lead iodide perovskite 2019 Chin. Phys. B 28 017802

[1] Yang L, Barrows A T, Lidzey D G and Wang T 2016 Rep. Prog. Phys. 79 026501
[2] Merabet B, Alamri H, Djermouni M, Zaoui A, Kacimi S, Boukortt A and Bejar M 2017 Chin. Phys. Lett. 34 016101
[3] Xue D J, Shi H J and Tang J 2015 Acta Phys. Sin. 64 038406 (in Chinese)
[4] Andersson B A 2000 Prog. Photovoltaics 8 61
[5] Jiang S, Jia R, Tao K, Hou C X, Sun H C, Yu Z Y and Li Y T 2017 Chin. Phys. B 26 087802
[6] Jackson P, Hariskos D, Wuerz R, Kiowski O, Bauer A, Friedlmeier T M and Powalla M 2015 Phys. Status Solidi RRL 9 28
[7] Burschka J L, Pellet N, Moon S J, Robin H B, Gao P, Nazeeruddin M K and Gratzel M 2013 Nature 499 316
[8] Yang J, Zhao D G, Jiang D S, Liu Z S, Chen P, Li L, Wu L L, Le L C, Li X J, He X G, Wang H, Zhu J J, Zhang S M, Zhang B S and Yang H 2013 Chin. Phys. B 22 098801
[9] Mathew S, Yella A, Gao P, Robin H B, Curchod B F E, Negar A A, Tavernelli I, Rothlisberger U, Nazeeruddin M K and Grätzel M 2014 Nat. Chem. 6 242
[10] Chiang C H, Nazeeruddin M K, Grätzel M and Chun J W 2017 Energy Environ. Sci. 10 808
[11] Lam J Y, Chen J Y, Tsai P C, Hsieh Y T, Chueh C C, Tung S H and Chen W C 2017 RSC Adv. 7 54361
[12] Saliba M, Matsui T, Domansk K, Seo J Y, Ummadisingu A, Zakeeruddin S M, Correa-Baena J P, Tress W R, Abate A, Hagfeldt A and Grätzel M 2016 Science 354 206
[13] Shi B, Guo S, Wei C C, Wei C C, Li B Z Li B, Ding Y, Li Y L, Wan Q, Zhao Y and Zhang X D 2018 Chin. Phys. B 27 018807
[14] Kojima A, Teshima K, Shirai Y and Miyasaka T 2009 J. Am. Chem. Soc. 131 6050
[15] Yang W S, Noh J H, Jeon N J, Kim Y C, Ryu S, Seo J and Seok S I 2015 Science 348 1234
[16] McMeekin D P, Sadoughi G, Rehman W, Eperon G E, Saliba M, Hörantner M T, Haghighirad A, Sakai N, Korte L, Rech B, Johnston M B, Herz L M and Snaith H J 2016 Science 351 151
[17] Pena M A and Fierro J L G 2001 Chem. Rev. 101 1981
[18] Koliogiorgos A, Sotirios B and Galanakis I 2017 Comput. Mater. Sci. 138 92
[19] Jacobsson T J, Pazoki M, Hagfeldt A and Edvinsson T 2015 J. Phys. Chem. C 119 25673
[20] Eperon G E, Leijtens T, Bush K A, et al. 2016 Science 354 861
[21] Clark S J, Segall D, Pickard C J, Hasnip P J, Probert M I J, Refson K and Payne M C 2005 Z. Für Kristallo Graphie 220 567
[22] Perdew J P, Wang Y 1992 Phys. Rev. B 45 13244
[23] Jeon N J, Noh J H, Yang W S, Kim Y C, Ryu S, Seo J and Seok S I 2015 Nature 517 476
[24] Han Q, Bae S H, Sun P, Hsieh Y S, Yang Y, Rim Y T, Zhao H X, Chen Q, Shi W Z, Li G and Yang Y 2016 Adv. Mater. 28 2253
[25] Yang W S, Noh J H, Jeon N J, Kim Y C, Ryu S C, Seo J W and Seok S I 2015 Science 348 1234
[26] Pellet N, Gao P, Gregori G, Yang T Y, Nazeeruddin M K, Maier J and Gratzel M 2014 Angew. Chem. Int. Ed. 53 3151
[27] Binek A, Hanusch F C, Docampo P and Bein T 2015 J. Phys. Chem. Lett. 6 1249
[28] Koliogiorgos A, Baskoutas S and Galanakis I 2017 Comput. Mater. Sci. 138 92
[29] Guo Y, Li C B, Li X C, Niu Y S, Hou S G and Wang F 2017 J. Phys. Chem. C 121 12711
[30] Fan Q Y, Chai C C, Wei Q and Yang Y T 2016 Phys. Chem. Chem. Phys. 18 12905
[31] Marinado T, Nonomura K, Nissfolk J, Karlsson D K, Sun L C, Mori S and Hagfeldt A 2010 Langmuir 26 2592
[32] Li W, Bai F Q, Chen J, Wang J and Zhang H X 2015 Application J. Power Sources 275 207
[1] Electron beam pumping improves the conversion efficiency of low-frequency photons radiated by perovskite quantum dots
Peng Du(杜鹏), Yining Mu(母一宁), Hang Ren(任航), Idelfonso Tafur Monroy, Yan-Zheng Li(李彦正), Hai-Bo Fan(樊海波), Shuai Wang(王帅), Makram Ibrahim, and Dong Liang(梁栋). Chin. Phys. B, 2023, 32(4): 048704.
[2] Electroluminescence explored internal behavior of carriers in InGaAsP single-junction solar cell
Xue-Fei Li(李雪飞), Wen-Xian Yang(杨文献), Jun-Hua Long(龙军华), Ming Tan(谭明), Shan Jin(金山), Dong-Ying Wu(吴栋颖), Yuan-Yuan Wu(吴渊渊), and Shu-Long Lu(陆书龙). Chin. Phys. B, 2023, 32(1): 017801.
[3] Interface-induced topological phase and doping-modulated bandgap of two-dimensioanl graphene-like networks
Ningjing Yang(杨柠境), Hai Yang(杨海), and Guojun Jin(金国钧). Chin. Phys. B, 2023, 32(1): 017201.
[4] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[5] Hexagonal boron phosphide and boron arsenide van der Waals heterostructure as high-efficiency solar cell
Yi Li(李依), Dong Wei(魏东), Gaofu Guo(郭高甫), Gao Zhao(赵高), Yanan Tang(唐亚楠), and Xianqi Dai(戴宪起). Chin. Phys. B, 2022, 31(9): 097301.
[6] Sub-stochiometric MoOx by radio-frequency magnetron sputtering as hole-selective passivating contacts for silicon heterojunction solar cells
Xiufang Yang(杨秀芳), Shengsheng Zhao(赵生盛), Qian Huang(黄茜), Cao Yu(郁超), Jiakai Zhou(周佳凯), Xiaoning Liu(柳晓宁), Xianglin Su(苏祥林),Ying Zhao(赵颖), and Guofu Hou(侯国付). Chin. Phys. B, 2022, 31(9): 098401.
[7] Optical simulation of CsPbI3/TOPCon tandem solar cells with advanced light management
Min Yue(岳敏), Yan Wang(王燕), Hui-Li Liang(梁会力), and Zeng-Xia Mei (梅增霞). Chin. Phys. B, 2022, 31(8): 088801.
[8] Improving efficiency of inverted perovskite solar cells via ethanolamine-doped PEDOT:PSS as hole transport layer
Zi-Jun Wang(王子君), Jia-Wen Li(李嘉文), Da-Yong Zhang(张大勇), Gen-Jie Yang(杨根杰), and Jun-Sheng Yu(于军胜). Chin. Phys. B, 2022, 31(8): 087802.
[9] Modeling and numerical simulation of electrical and optical characteristics of a quantum dot light-emitting diode based on the hopping mobility model: Influence of quantum dot concentration
Pezhman Sheykholeslami-Nasab, Mahdi Davoudi-Darareh, and Mohammad Hassan Yousefi. Chin. Phys. B, 2022, 31(6): 068504.
[10] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[11] Surface-induced orbital-selective band reconstruction in kagome superconductor CsV3Sb5
Linwei Huai(淮琳崴), Yang Luo(罗洋), Samuel M. L. Teicher, Brenden R. Ortiz, Kaize Wang(王铠泽),Shuting Peng(彭舒婷), Zhiyuan Wei(魏志远), Jianchang Shen(沈建昌), Bingqian Wang(王冰倩), Yu Miao(缪宇),Xiupeng Sun(孙秀鹏), Zhipeng Ou(欧志鹏), Stephen D. Wilson, and Junfeng He(何俊峰). Chin. Phys. B, 2022, 31(5): 057403.
[12] Ferroelectric Ba0.75Sr0.25TiO3 tunable charge transfer in perovskite devices
Zi-Xuan Chen(陈子轩), Jia-Lin Sun(孙家林), Qiang Zhang(张强), Chong-Xin Qian(钱崇鑫), Ming-Zi Wang(王明梓), and Hong-Jian Feng(冯宏剑). Chin. Phys. B, 2022, 31(5): 057202.
[13] Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
Xin Zhang(张鑫), Ruge Quhe(屈贺如歌), and Ming Lei(雷鸣). Chin. Phys. B, 2022, 31(4): 046401.
[14] Advances in thermoelectric (GeTe)x(AgSbTe2)100-x
Hongxia Liu(刘虹霞), Xinyue Zhang(张馨月), Wen Li(李文), and Yanzhong Pei(裴艳中). Chin. Phys. B, 2022, 31(4): 047401.
[15] Applications and functions of rare-earth ions in perovskite solar cells
Limin Cang(苍利民), Zongyao Qian(钱宗耀), Jinpei Wang(王金培), Libao Chen(陈利豹), Zhigang Wan(万志刚), Ke Yang(杨柯), Hui Zhang(张辉), and Yonghua Chen(陈永华). Chin. Phys. B, 2022, 31(3): 038402.
No Suggested Reading articles found!