CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
0-π transition induced by the barrier strength in spin superconductor Josephson junctions |
Wen Zeng(曾文)1, Rui Shen(沈瑞)1,2 |
1 National Laboratory of Solid State Microstructures and School of Physics, Nanjing University, Nanjing 210093, China;
2 Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China |
|
|
Abstract The Andreev-like levels and the free energy of the spin superconductor/insulator/spin superconductor junction are obtained by using the Bogoliubov-de Gennes equation. The phase dependence of the spin supercurrents exhibits a 0-π transition by changing the barrier strength. The dependences of the critical current on the barrier strength and the temperature are also presented.
|
Received: 04 May 2018
Revised: 19 June 2018
Accepted manuscript online:
|
PACS:
|
74.50.+r
|
(Tunneling phenomena; Josephson effects)
|
|
73.43.Jn
|
(Tunneling)
|
|
Fund: Project supported by the National Key R&D Program of China (Grant No. 2017YFA0303203) and the National Natural Science Foundation of China (Grant No. 11474149). |
Corresponding Authors:
Rui Shen
E-mail: shen@nju.edu.cn
|
Cite this article:
Wen Zeng(曾文), Rui Shen(沈瑞) 0-π transition induced by the barrier strength in spin superconductor Josephson junctions 2018 Chin. Phys. B 27 097401
|
[1] |
Bardeen J, Cooper L N and Schrieffer J R 1957 Phys. Rev. 108 1175
|
[2] |
Sun Q F, Jiang Z T, Yue Y and Xie X C 2011 Phys. Rev. B 84 214501
|
[3] |
Liu H W, Jiang H, Xie X C and Sun Q F 2012 Phys. Rev. B 86 085441
|
[4] |
Sun Q F and Xie X C 2013 Phys. Rev. B 87 245427
|
[5] |
Bao Z Q, Xie X C and Sun Q F 2013 Nature Communications. 4 2951
|
[6] |
Lv P, Guo A M, Li H Y, Liu C X, Xie X C and Sun Q F 2017 Phys. Rev. B 95 104516
|
[7] |
Shevchenko S I 1976 Fiz. Nizk. Temp. 2 251
|
[8] |
Lozovik Y E and Yudson V I 1975 JETP Lett. 22 274
|
[9] |
Sivan U, Solomon P M and Shtrikman H 1992 Phys. Rev. Lett. 68 1196
|
[10] |
Butov L V, Zrenner A, Abstreiter G, Bohm G and Weimann G 1994 Phys. Rev. Lett. 73 304
|
[11] |
Chang M S, Qin Q S, Zhang W X, You L and Chapman M S 2005 Nat. Phys. 1 111
|
[12] |
Lin Y J, Garci K J and Spielman I B 2011 Nature 471 83
|
[13] |
Hamner C, Zhang Y P, Khamehchi M A, Davis M J and Engels P 2015 Phys. Rev. Lett. 114 070401
|
[14] |
Giamarchi T, Rsegg R and Tchernyshyov O 2008 Nat. Phys. 4 198
|
[15] |
Mazurenko V V, Valentyuk M V, Stern R and Tsirlin A A 2014 Phys. Rev. Lett. 112 107202
|
[16] |
Kimura S, Kakihata K, Sawada Y, Watanabe K, Matsumoto M, Hagiwara M and Tanaka H 2016 Nat. Commun. 7 12822
|
[17] |
Yuan W, Zhu Q, Su T, Yao Y Y, Xing W Y, Chen Y Y, Ma Y, Lin X, Shi J, Shindou R, Xie X C and Han W 2018 Science Advances 4 eaat1098
|
[18] |
Josephson B D 1974 Rev. Mod. Phys. 46 251
|
[19] |
Josephson B D 1962 Phys. Lett. 1 25
|
[20] |
Anderson P W and Rowell J M 1963 Phys. Rev. Lett. 10 230
|
[21] |
Zhai J Q, Li Y C, Shi J X, Zhou Y, Li X H, Xu W W, Sun G Z and Wu P H 2015 Chin. Phys. Lett. 32 47402
|
[22] |
Wu B H, Feng X Y, Wang C, Xu X F and Wang C R 2016 Chin. Phys. Lett. 33 17401
|
[23] |
Su F F, Liu W Y, Xu H K, Deng H, Li Z Y, Tian Y, Zhu X B, Zheng D N, Lv L and Zhao S P 2017 Chin. Phys. B 26 060308
|
[24] |
Beenakker C W J 1991 Phys. Rev. Lett. 67 3836
|
[25] |
Beenakker C W J and Houten H V 1991 Phys. Rev. Lett. 66 3056
|
[26] |
Beenakker C W J and Houten H V 1991 Proceedings of the International Symposium on Nanostructures and Mesoscopic Systems (Santa Fe:Kirk W P) pp. 20-24
|
[27] |
Giuliano D and Affleck I 2013 Journal of Statistical Mechanics 02 02034
|
[28] |
Wang Z Y, Shen R 2010 Chin. Phys. B 19 087401
|
[29] |
Hamidreza E 2014 Chin. Phys. B 23 057402
|
[30] |
Li X W, Liu D and Bao Y H 2013 Chin. Phys. B 22 127401
|
[31] |
Wang P, Xie W, Hu L, Liu X, Zhao X J, He M, Ji L, Zhang X and Yan S L 2013 Chin. Phys. B 22 057402
|
[32] |
Wang B G, Peng J, Xing D Y and Wang J 2005 Phys. Rev. Lett. 95 086608
|
[33] |
Annunziata G, Enoksen H, Linder J, Cuoco M, Noce C and Sudb A 2011 Phys. Rev. B 83 144520
|
[34] |
Lin Y J, Garci K J and Spielman I B 2011 Nature 471 83
|
[35] |
Meng Q L, Shivamoggi V, Hughes T L, Gilbert M J and Vishveshwara S 2012 Phys. Rev. B 86 165110
|
[36] |
Kwon H J, Sengupta K and Yakovenko V M 2004 Euro. Phys. J. B 37 349
|
[37] |
Ryazanov V V, Oboznov V A, Rusanov A Y, Veretennikov A V, Golubov A A and Aarts J 2001 Phys. Rev. Lett. 86 2427
|
[38] |
Oboznov V A, Bolginov V V, Feofanov A K, Ryazanov V V and Buzdin A I 2006 Phys. Rev. Lett. 96 197003
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|