Special Issue:
TOPICAL REVIEW — Nanophotonics
|
|
|
Intrinsic luminescence from metal nanostructures and its applications |
Weidong Zhang(张威东)1, Te Wen(温特)1, Yuqing Cheng(程宇清)1, Jingyi Zhao(赵静怡)1, Qihuang Gong(龚旗煌)1,2, Guowei Lü(吕国伟)1,2 |
1 State Key Laboratory for Mesoscopic Physics & Collaborative Innovation Center of Quantum Matter, Department of Physics, Peking University, Beijing 100871, China;
2 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China |
|
|
Abstract Intrinsic luminescence from metal nanostructures complements conventional scattering and absorption behaviors and has many interesting and unique features. This phenomenon has attracted considerable research attention in recent years because of its various potential applications. In this review, we discuss recent advances in this field, summarize potential applications for this type of luminescence, and compare theoretical models to describe the phenomena. On the basis of the excitation process, the characteristic features and corresponding applications are summarized briefly in three parts, namely, continuous-wave light, pulsed laser, and electron excitation. A universal physical mechanism likely operates in all these emission processes regardless of differences in the excitation processes; however, there remains some debate surrounding the details of the theoretical model. Further insight into these luminescence phenomena will not only provide a deeper fundamental understanding of plasmonic nanostructures but will also advance and extend their applications.
|
Received: 17 April 2018
Revised: 06 June 2018
Accepted manuscript online:
|
PACS:
|
73.20.Mf
|
(Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))
|
|
78.67.Bf
|
(Nanocrystals, nanoparticles, and nanoclusters)
|
|
78.60.Hk
|
(Cathodoluminescence, ionoluminescence)
|
|
Corresponding Authors:
Guowei Lü
E-mail: guowei.lu@pku.edu.cn
|
Cite this article:
Weidong Zhang(张威东), Te Wen(温特), Yuqing Cheng(程宇清), Jingyi Zhao(赵静怡), Qihuang Gong(龚旗煌), Guowei Lü(吕国伟) Intrinsic luminescence from metal nanostructures and its applications 2018 Chin. Phys. B 27 097302
|
[1] |
Moskovits M 1985 Rev. Mod. Phys. 57 783
|
[2] |
Anker J N, Hall W P, Lyandres O, Shah N C, Zhao J and Van Duyne R P 2008 Nat. Mater. 7 442
|
[3] |
Baffou G and Quidant R 2014 Chem. Soc. Rev. 43 3898
|
[4] |
Brongersma M L, Halas N J and Nordlander P 2015 Nat. Nanotechnol. 10 25
|
[5] |
Monticone F and Alu A 2014 Chin. Phys. B 23 047809
|
[6] |
Crut A, Maioli P, Del Fatti N and Vallee F 2014 Chem. Soc. Rev. 43 3921
|
[7] |
Shen H, Lu G, Zhang T, Liu J, Gu Y, Perriat P, Martini M, Tillement O and Gong Q 2013 Nanotechnology 24 285502
|
[8] |
Chang W S, Willingham B, Slaughter L S, Dominguez-Medina S, Swanglap P and Link S 2012 Acc. Chem. Res. 45 1936
|
[9] |
Mooradian A 1969 Phys. Rev. Lett. 22 185
|
[10] |
Boyd G T, Yu Z H and Shen Y R 1986 Phys. Rev. B 33 7923
|
[11] |
Apell P, Monreal R and Lundqvist S 1988 Phys. Scr. 38 174
|
[12] |
Mohamed M B, Volkov V, Link S and El-Sayed M A 2000 Chem. Phys. Lett. 317 517
|
[13] |
Klar T, Perner M, Grosse S, von Plessen G, Spirkl W and Feldmann J 1998 Phys. Rev. Lett. 80 4249
|
[14] |
Tcherniak A, Ha J W, Dominguez-Medina S, Slaughter L S and Link S 2010 Nano Lett. 10 1398
|
[15] |
Zijlstra P, Chon J W and Gu M 2009 Nature 459 410
|
[16] |
Wang H, Huff T B, Zweifel D A, He W, Low P S, Wei A and Cheng J X 2005 Proc. Natl. Acad. Sci. USA 102 15752
|
[17] |
Jiang Y Q, Horimoto N N, Imura K, Okamoto H, Matsui K and Shigemoto R 2009 Adv. Mater. 21 2309
|
[18] |
Lu G W, Hou L, Zhang T Y, Liu J, Shen H M, Luo C X and Gong Q H 2012 J. Phys. Chem. C 116 25509
|
[19] |
Zhang T, Shen H, Lu G, Liu J, He Y, Wang Y and Gong Q 2013 Adv. Opt. Mater. 1 335
|
[20] |
He Y, Xia K, Lu G, Shen H, Cheng Y, Liu Y C, Shi K, Xiao Y F and Gong Q 2015 Nanoscale 7 577
|
[21] |
Ghenuche P, Cherukulappurath S, Taminiau T H, van Hulst N F and Quidant R 2008 Phys. Rev. Lett. 101 116805
|
[22] |
He Y B, Lu G W, Shen H M, Cheng Y Q and Gong Q H 2015 Appl. Phys. Lett. 107
|
[23] |
Lin K Q, Yi J, Zhong J H, Hu S, Liu B J, Liu J Y, Zong C, Lei Z C, Wang X, Aizpurua J, Esteban R and Ren B 2017 Nat. Commun. 8 14891
|
[24] |
Zhao J Y, Cheng Y Q, Shen H M, Hui Y Y, Wen T, Chang H C, Gong Q H and Lu G W 2018 Sci. Rep. 8 3605
|
[25] |
Cheng Y Q, Lu G W, shen H M, Wang Y W, He Y B, Chou R Y Y and Gong Q H 2015 Opt. Commun. 350 40
|
[26] |
Sun C K, Vallée F, Acioli L H, Ippen E P and Fujimoto J G 1994 Phys. Rev. B 50 15337
|
[27] |
Sivun D, Vidal C, Munkhbat B, Arnold N, Klar T A and Hrelescu C 2016 Nano Lett. 16 7203
|
[28] |
Willets K A and Van Duyne R P 2007 Annu. Rev. Phys. Chem. 58 267
|
[29] |
Lin K Q, Yi J, Hu S, Sun J J, Zheng J T, Wang X and Ren B 2016 ACS Photon. 3 1248
|
[30] |
Cheng Y, Lu G, He Y, Shen H, Zhao J, Xia K and Gong Q 2016 Nanoscale 8 2188
|
[31] |
Huang D, Byers C P, Wang L Y, Hoggard A L, Hoenee B, Dominguez-Medina S, Chen S S, Chang W S, Landes C F and Link S 2015 ACS Nano 9 7072
|
[32] |
Yorulmaz M, Khatua S, Zijlstra P, Gaiduk A and Orrit M 2012 Nano Lett. 12 4385
|
[33] |
Yin T, Dong Z, Jiang L, Zhang L, Hu H, Qiu C W, Yang J K W and Shen Z X 2016 ACS Photon. 3 979
|
[34] |
Zheng J, Zhou C, Yu M X and Liu J B 2012 Nanoscale 4 4073
|
[35] |
Park J E, Kim J and Nam J M 2017 Chem. Sci. 8 4696
|
[36] |
Park J E, Kim S, Son J, Lee Y and Nam J M 2016 Nano Lett. 16 7962
|
[37] |
Wang Y W, Shen H M, He Y B, Cheng Y Q, Perriat P, Martini M, Tillement O, Gong Q H and Lu G W 2014 Chem. Phys. Lett. 610 278
|
[38] |
Hu H L, Duan H G, Yang J K W and Shen Z X 2012 ACS Nano 6 10147
|
[39] |
Fang Y, Chang W S, Willingham B, Swanglap P, Dominguez-Medina S and Link S 2012 ACS Nano 6 7177
|
[40] |
Zhang T, Lu G, Shen H, Shi K, Jiang Y, Xu D and Gong Q 2015 Sci. Rep. 4 3867
|
[41] |
Yin T T, Dong Z G, Jiang L Y, Zhang L, Hu H L, Qiu C W, Yang J K W and Shen Z X 2016 ACS Photon. 3 979
|
[42] |
Wen T, He Y, Liu X L, Lin M L, Cheng Y, Zhao J, Gong Q, Xia K, Tan P H and Lu G 2017 AIP Adv. 7 125106
|
[43] |
He Y, Cheng Y, Zhao J, Li X Z, Gong Q and Lu G 2016 J. Phys. Chem. C 120 16954
|
[44] |
Neupane B, Zhao L Y and Wang G F 2013 Nano Lett. 13 4087
|
[45] |
Carattino A, Caldarola M and Orrit M 2018 Nano Lett. 18 874
|
[46] |
Carattino A, Keizer V I P, Schaaf M J M and Orrit M 2016 Biophys. J. 111 2492
|
[47] |
Cheng Y, Zhao J, Wen T, Li G, Xu J, Hu A, Gong Q and Lu G 2017 J. Phys. Chem. C 121 23626
|
[48] |
Carles R, Bayle M, Benzo P, Benassayag G, Bonafos C, Cacciato G and Privitera V 2015 Phys. Rev. B 92 174302
|
[49] |
Mahajan S, Cole R M, Speed J D, Pelfrey S H, Russell A E, Bartlett P N, Barnett S M and Baumberg J J 2010 J. Phys. Chem. C 114 7242
|
[50] |
Cao Z M, He Y B, Cheng Y Q, Zhao J Y, Li G T, Gong Q H and Lu G W 2016 Appl. Phys. Lett. 109
|
[51] |
Sakat E, Bargigia I, Celebrano M, Cattoni A, Collin S, Brida D, Finazzi M, D'Andrea C and Biagioni P 2016 Acs Photon. 3 1489
|
[52] |
Lu G W, Li W Q, Zhang T Y, Yue S, Liu J, Hou L, Li Z and Gong Q H 2012 ACS Nano 6 1438
|
[53] |
Klemm P, Haug T, Bange S and Lupton J M 2014 Phys. Rev. Lett. 113 266805
|
[54] |
Varnavski O P, Goodson T, Mohamed M B and El-Sayed M A 2005 Phys. Rev. B 72 235405
|
[55] |
Tcherniak A, Dominguez-Medina S, Chang W S, Swanglap P, Slaughter L S, Landes C F and Link S 2011 J. Phys. Chem. C 115 15938
|
[56] |
Beversluis M R, Bouhelier A and Novotny L 2003 Phys. Rev. B 68 115433
|
[57] |
Haug T, Klemm P, Bange S and Lupton J M 2015 Phys. Rev. Lett. 115 067403
|
[58] |
Sonnichsen C, Franzl T, Wilk T, von Plessen G, Feldmann J, Wilson O and Mulvaney P 2002 Phys. Rev. Lett. 88 077402
|
[59] |
Varnavski O P, Mohamed M B, El-Sayed M A and Goodson T 2003 J. Phys. Chem. B 107 3101
|
[60] |
Dulkeith E, Niedereichholz T, Klar T A, Feldmann J, von Plessen G, Gittins D I, Mayya K S and Caruso F 2004 Phys. Rev. B 70 205424
|
[61] |
Huang J, Wang W, Murphy C J and Cahill D G 2014 Proc. Natl. Acad. Sci. USA 111 906
|
[62] |
Hugall J T and Baumberg J J 2015 Nano Lett. 15 2600
|
[63] |
Mertens J, Kleemann M E, Chikkaraddy R, Narang P and Baumberg J J 2017 Nano Lett. 17 2568
|
[64] |
Otto A, Akemann W and Pucci A 2010 Isr J. Chem. 46 307
|
[65] |
Roloff L, Klemm P, Gronwald I, Huber R, Lupton J M and Bange S 2017 Nano Lett. 17 7914
|
[66] |
Xia K Y, He Y B, Shen H M, Cheng Y Q, Gong Q H and Lu G W 2015 Micro+ Nano Mater. Devices Syst. 9668 96685B
|
[67] |
Shahbazyan T V 2013 Nano Lett. 13 194
|
[68] |
al M B A e 1980 Sov. Phys. JETP 52 27
|
[69] |
Agranat M B, Benditskii A A, Gandelman G M, Devyatkov A G, Kondratenko P S, Makshantsev B I, Rukman G I and Stepanov B M 1979 JETP Lett. 30 167
|
[70] |
Bouhelier A, Bachelot R, Lerondel G, Kostcheev S, Royer P and Wiederrecht G P 2005 Phys. Rev. Lett. 95 267405
|
[71] |
Farrer R A, Butterfield F L, Chen V W and Fourkas J T 2005 Nano Lett. 5 1139
|
[72] |
Zhang Z X, Sonek G J, Wei X B, Sun C, Berns M W and Tromberg B J 1999 J. Biomed. Opt. 4 Zhanxiang Zhang; Gregory J. Sonek; Xunbin Wei; Chung-Ho Sun; Michael W. Berns; Bruce J. Tromberg
|
[73] |
Durr N J, Larson T, Smith D K, Korgel B A, Sokolov K and Ben-Yakar A 2007 Nano Lett. 7 941
|
[74] |
Imura K, Nagahara T and Okamoto H 2004 J. Am. Chem. Soc. 126 12730
|
[75] |
Biagioni P, Celebrano M, Savoini M, Grancini G, Brida D, Mátéfi-Tempfli S, Mátéfi-Tempfli M, Duó L, Hecht B, Cerullo G and Finazzi M 2009 Phys. Rev. B 80 045411
|
[76] |
Eichelbaum M, Schmidt B E, Ibrahim H and Rademann K 2007 Nanotechnology 18 355702
|
[77] |
Wang Q Q, Han J B, Guo D L, Xiao S, Han Y B, Gong H M and Zou X W 2007 Nano Lett. 7 723
|
[78] |
Biagioni P, Brida D, Huang J S, Kern J, Duo L, Hecht B, Finazzi M and Cerullo G 2012 Nano Lett. 12 2941
|
[79] |
Bouhelier A, Beversluis M R and Novotny L 2003 Appl. Phys. Lett. 83 5041
|
[80] |
Cheng Y Q, Zhang W D, Zhao J Y, Wen T, Hu A Q, Gong Q H and Lu G W 2018 Nanotechnology 29
|
[81] |
Sun C K, Vallée F, Acioli L, Ippen E P and Fujimoto J G 1993 Phys. Rev. B 48 12365
|
[82] |
Groeneveld R H M, Sprik R and Lagendijk A 1995 Phys. Rev. B 51 11433
|
[83] |
Sundararaman R, Narang P, Jermyn A S, Goddard W A and Atwater H A 2014 Nat. Commun. 5 5788
|
[84] |
Bernardi M, Mustafa J, Neaton J B and Louie S G 2015 Nat. Commun. 6 7044
|
[85] |
Brown A M, Sundararaman R, Narang P, Goddard W A, 3rd and Atwater H A 2016 ACS Nano 10 957
|
[86] |
Yamamoto N, Araya K and de Abajo F J G 2001 Phys. Rev. B 64 205419
|
[87] |
Yu A, Li S, Czap G and Ho W 2016 Nano Lett. 16 5433
|
[88] |
de Abajo F J G 2010 Rev. Mod. Phys. 82 209
|
[89] |
Atre A C, Brenny B J M, Coenen T, Garcia-Etxarri A, Polman A and Dionne J A 2015 Nat. Nanotechnol. 10 429
|
[90] |
Vesseur E J R, de Waele R, Kuttge M and Polman A 2007 Nano Lett. 7 2843
|
[91] |
Coenen T and Polman A 2014 ACS Nano 8 7350
|
[92] |
Coenen T, Vesseur E J, Polman A and Koenderink A F 2011 Nano Lett. 11 3779
|
[93] |
Berndt R, Gimzewski J K and Johansson P 1991 Phys. Rev. Lett. 67 3796
|
[94] |
Dong Z C, Zhang X L, Gao H Y, Luo Y, Zhang C, Chen L G, Zhang R, Tao X, Zhang Y, Yang J L and Hou J G 2010 Nat. Photon. 4 50
|
[95] |
Kravtsov V, Berweger S, Atkin J M and Raschke M B 2014 Nano Lett. 14 5270
|
[96] |
Le Moal E, Marguet S, Rogez B, Mukherjee S, Dos Santos P, Boer-Duchemin E, Comtet G and Dujardin G 2013 Nano Lett. 13 4198
|
[97] |
Lambe J and McCarthy S L 1976 Phys. Rev. Lett. 37 923
|
[98] |
Parzefall M, Bharadwaj P, Jain A, Taniguchi T, Watanabe K and Novotny L 2015 Nat. Nanotechnol. 10 1058
|
[99] |
Kern J, Kullock R, Prangsma J, Emmerling M, Kamp M and Hecht B 2015 Nat. Photon. 9 582
|
[100] |
Vardi Y, Cohen-Hoshen E, Shalem G and Bar-Joseph I 2016 Nano Lett. 16 748
|
[101] |
Gurunarayanan S P, Verellen N, Zharinov V S, Shirley F J, Moshchalkov V V, Heyns M, Van de Vondel J, Radu I P and Van Dorpe P 2017 Nano Lett. 17 7433
|
[102] |
Ward D R, Corley D A, Tour J M and Natelson D 2011 Nat. Nanotechnol. 6 33
|
[103] |
Dathe A, Ziegler M, Hubner U, Fritzsche W and Stranik O 2016 Nano Lett. 16 5728
|
[104] |
Ou M G, Lu G W, Shen H, Descamps A, Marquette C A, Blum L J, Ledoux G, Roux S, Tillement O, Cheng B L and Perriat P 2007 Adv. Funct. Mater. 17 1903
|
[105] |
Lee K H, Lai S F, Lin Y C, Chou W C, Ong E B L, Tan H R, Tok E S, Yang C S, Margaritondo G and Hwu Y 2014 Mater. Chem. Phys. 149 582
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|