Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(9): 097302    DOI: 10.1088/1674-1056/27/9/097302
Special Issue: TOPICAL REVIEW — Nanophotonics
TOPICAL REVIEW—Nanophotonics Prev   Next  

Intrinsic luminescence from metal nanostructures and its applications

Weidong Zhang(张威东)1, Te Wen(温特)1, Yuqing Cheng(程宇清)1, Jingyi Zhao(赵静怡)1, Qihuang Gong(龚旗煌)1,2, Guowei Lü(吕国伟)1,2
1 State Key Laboratory for Mesoscopic Physics & Collaborative Innovation Center of Quantum Matter, Department of Physics, Peking University, Beijing 100871, China;
2 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
Abstract  

Intrinsic luminescence from metal nanostructures complements conventional scattering and absorption behaviors and has many interesting and unique features. This phenomenon has attracted considerable research attention in recent years because of its various potential applications. In this review, we discuss recent advances in this field, summarize potential applications for this type of luminescence, and compare theoretical models to describe the phenomena. On the basis of the excitation process, the characteristic features and corresponding applications are summarized briefly in three parts, namely, continuous-wave light, pulsed laser, and electron excitation. A universal physical mechanism likely operates in all these emission processes regardless of differences in the excitation processes; however, there remains some debate surrounding the details of the theoretical model. Further insight into these luminescence phenomena will not only provide a deeper fundamental understanding of plasmonic nanostructures but will also advance and extend their applications.

Keywords:  metal nanostructure      luminescence      surface plasmon      spectroscopy  
Received:  17 April 2018      Revised:  06 June 2018      Accepted manuscript online: 
PACS:  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  78.67.Bf (Nanocrystals, nanoparticles, and nanoclusters)  
  78.60.Hk (Cathodoluminescence, ionoluminescence)  
Corresponding Authors:  Guowei Lü     E-mail:  guowei.lu@pku.edu.cn

Cite this article: 

Weidong Zhang(张威东), Te Wen(温特), Yuqing Cheng(程宇清), Jingyi Zhao(赵静怡), Qihuang Gong(龚旗煌), Guowei Lü(吕国伟) Intrinsic luminescence from metal nanostructures and its applications 2018 Chin. Phys. B 27 097302

[1] Moskovits M 1985 Rev. Mod. Phys. 57 783
[2] Anker J N, Hall W P, Lyandres O, Shah N C, Zhao J and Van Duyne R P 2008 Nat. Mater. 7 442
[3] Baffou G and Quidant R 2014 Chem. Soc. Rev. 43 3898
[4] Brongersma M L, Halas N J and Nordlander P 2015 Nat. Nanotechnol. 10 25
[5] Monticone F and Alu A 2014 Chin. Phys. B 23 047809
[6] Crut A, Maioli P, Del Fatti N and Vallee F 2014 Chem. Soc. Rev. 43 3921
[7] Shen H, Lu G, Zhang T, Liu J, Gu Y, Perriat P, Martini M, Tillement O and Gong Q 2013 Nanotechnology 24 285502
[8] Chang W S, Willingham B, Slaughter L S, Dominguez-Medina S, Swanglap P and Link S 2012 Acc. Chem. Res. 45 1936
[9] Mooradian A 1969 Phys. Rev. Lett. 22 185
[10] Boyd G T, Yu Z H and Shen Y R 1986 Phys. Rev. B 33 7923
[11] Apell P, Monreal R and Lundqvist S 1988 Phys. Scr. 38 174
[12] Mohamed M B, Volkov V, Link S and El-Sayed M A 2000 Chem. Phys. Lett. 317 517
[13] Klar T, Perner M, Grosse S, von Plessen G, Spirkl W and Feldmann J 1998 Phys. Rev. Lett. 80 4249
[14] Tcherniak A, Ha J W, Dominguez-Medina S, Slaughter L S and Link S 2010 Nano Lett. 10 1398
[15] Zijlstra P, Chon J W and Gu M 2009 Nature 459 410
[16] Wang H, Huff T B, Zweifel D A, He W, Low P S, Wei A and Cheng J X 2005 Proc. Natl. Acad. Sci. USA 102 15752
[17] Jiang Y Q, Horimoto N N, Imura K, Okamoto H, Matsui K and Shigemoto R 2009 Adv. Mater. 21 2309
[18] Lu G W, Hou L, Zhang T Y, Liu J, Shen H M, Luo C X and Gong Q H 2012 J. Phys. Chem. C 116 25509
[19] Zhang T, Shen H, Lu G, Liu J, He Y, Wang Y and Gong Q 2013 Adv. Opt. Mater. 1 335
[20] He Y, Xia K, Lu G, Shen H, Cheng Y, Liu Y C, Shi K, Xiao Y F and Gong Q 2015 Nanoscale 7 577
[21] Ghenuche P, Cherukulappurath S, Taminiau T H, van Hulst N F and Quidant R 2008 Phys. Rev. Lett. 101 116805
[22] He Y B, Lu G W, Shen H M, Cheng Y Q and Gong Q H 2015 Appl. Phys. Lett. 107
[23] Lin K Q, Yi J, Zhong J H, Hu S, Liu B J, Liu J Y, Zong C, Lei Z C, Wang X, Aizpurua J, Esteban R and Ren B 2017 Nat. Commun. 8 14891
[24] Zhao J Y, Cheng Y Q, Shen H M, Hui Y Y, Wen T, Chang H C, Gong Q H and Lu G W 2018 Sci. Rep. 8 3605
[25] Cheng Y Q, Lu G W, shen H M, Wang Y W, He Y B, Chou R Y Y and Gong Q H 2015 Opt. Commun. 350 40
[26] Sun C K, Vallée F, Acioli L H, Ippen E P and Fujimoto J G 1994 Phys. Rev. B 50 15337
[27] Sivun D, Vidal C, Munkhbat B, Arnold N, Klar T A and Hrelescu C 2016 Nano Lett. 16 7203
[28] Willets K A and Van Duyne R P 2007 Annu. Rev. Phys. Chem. 58 267
[29] Lin K Q, Yi J, Hu S, Sun J J, Zheng J T, Wang X and Ren B 2016 ACS Photon. 3 1248
[30] Cheng Y, Lu G, He Y, Shen H, Zhao J, Xia K and Gong Q 2016 Nanoscale 8 2188
[31] Huang D, Byers C P, Wang L Y, Hoggard A L, Hoenee B, Dominguez-Medina S, Chen S S, Chang W S, Landes C F and Link S 2015 ACS Nano 9 7072
[32] Yorulmaz M, Khatua S, Zijlstra P, Gaiduk A and Orrit M 2012 Nano Lett. 12 4385
[33] Yin T, Dong Z, Jiang L, Zhang L, Hu H, Qiu C W, Yang J K W and Shen Z X 2016 ACS Photon. 3 979
[34] Zheng J, Zhou C, Yu M X and Liu J B 2012 Nanoscale 4 4073
[35] Park J E, Kim J and Nam J M 2017 Chem. Sci. 8 4696
[36] Park J E, Kim S, Son J, Lee Y and Nam J M 2016 Nano Lett. 16 7962
[37] Wang Y W, Shen H M, He Y B, Cheng Y Q, Perriat P, Martini M, Tillement O, Gong Q H and Lu G W 2014 Chem. Phys. Lett. 610 278
[38] Hu H L, Duan H G, Yang J K W and Shen Z X 2012 ACS Nano 6 10147
[39] Fang Y, Chang W S, Willingham B, Swanglap P, Dominguez-Medina S and Link S 2012 ACS Nano 6 7177
[40] Zhang T, Lu G, Shen H, Shi K, Jiang Y, Xu D and Gong Q 2015 Sci. Rep. 4 3867
[41] Yin T T, Dong Z G, Jiang L Y, Zhang L, Hu H L, Qiu C W, Yang J K W and Shen Z X 2016 ACS Photon. 3 979
[42] Wen T, He Y, Liu X L, Lin M L, Cheng Y, Zhao J, Gong Q, Xia K, Tan P H and Lu G 2017 AIP Adv. 7 125106
[43] He Y, Cheng Y, Zhao J, Li X Z, Gong Q and Lu G 2016 J. Phys. Chem. C 120 16954
[44] Neupane B, Zhao L Y and Wang G F 2013 Nano Lett. 13 4087
[45] Carattino A, Caldarola M and Orrit M 2018 Nano Lett. 18 874
[46] Carattino A, Keizer V I P, Schaaf M J M and Orrit M 2016 Biophys. J. 111 2492
[47] Cheng Y, Zhao J, Wen T, Li G, Xu J, Hu A, Gong Q and Lu G 2017 J. Phys. Chem. C 121 23626
[48] Carles R, Bayle M, Benzo P, Benassayag G, Bonafos C, Cacciato G and Privitera V 2015 Phys. Rev. B 92 174302
[49] Mahajan S, Cole R M, Speed J D, Pelfrey S H, Russell A E, Bartlett P N, Barnett S M and Baumberg J J 2010 J. Phys. Chem. C 114 7242
[50] Cao Z M, He Y B, Cheng Y Q, Zhao J Y, Li G T, Gong Q H and Lu G W 2016 Appl. Phys. Lett. 109
[51] Sakat E, Bargigia I, Celebrano M, Cattoni A, Collin S, Brida D, Finazzi M, D'Andrea C and Biagioni P 2016 Acs Photon. 3 1489
[52] Lu G W, Li W Q, Zhang T Y, Yue S, Liu J, Hou L, Li Z and Gong Q H 2012 ACS Nano 6 1438
[53] Klemm P, Haug T, Bange S and Lupton J M 2014 Phys. Rev. Lett. 113 266805
[54] Varnavski O P, Goodson T, Mohamed M B and El-Sayed M A 2005 Phys. Rev. B 72 235405
[55] Tcherniak A, Dominguez-Medina S, Chang W S, Swanglap P, Slaughter L S, Landes C F and Link S 2011 J. Phys. Chem. C 115 15938
[56] Beversluis M R, Bouhelier A and Novotny L 2003 Phys. Rev. B 68 115433
[57] Haug T, Klemm P, Bange S and Lupton J M 2015 Phys. Rev. Lett. 115 067403
[58] Sonnichsen C, Franzl T, Wilk T, von Plessen G, Feldmann J, Wilson O and Mulvaney P 2002 Phys. Rev. Lett. 88 077402
[59] Varnavski O P, Mohamed M B, El-Sayed M A and Goodson T 2003 J. Phys. Chem. B 107 3101
[60] Dulkeith E, Niedereichholz T, Klar T A, Feldmann J, von Plessen G, Gittins D I, Mayya K S and Caruso F 2004 Phys. Rev. B 70 205424
[61] Huang J, Wang W, Murphy C J and Cahill D G 2014 Proc. Natl. Acad. Sci. USA 111 906
[62] Hugall J T and Baumberg J J 2015 Nano Lett. 15 2600
[63] Mertens J, Kleemann M E, Chikkaraddy R, Narang P and Baumberg J J 2017 Nano Lett. 17 2568
[64] Otto A, Akemann W and Pucci A 2010 Isr J. Chem. 46 307
[65] Roloff L, Klemm P, Gronwald I, Huber R, Lupton J M and Bange S 2017 Nano Lett. 17 7914
[66] Xia K Y, He Y B, Shen H M, Cheng Y Q, Gong Q H and Lu G W 2015 Micro+ Nano Mater. Devices Syst. 9668 96685B
[67] Shahbazyan T V 2013 Nano Lett. 13 194
[68] al M B A e 1980 Sov. Phys. JETP 52 27
[69] Agranat M B, Benditskii A A, Gandelman G M, Devyatkov A G, Kondratenko P S, Makshantsev B I, Rukman G I and Stepanov B M 1979 JETP Lett. 30 167
[70] Bouhelier A, Bachelot R, Lerondel G, Kostcheev S, Royer P and Wiederrecht G P 2005 Phys. Rev. Lett. 95 267405
[71] Farrer R A, Butterfield F L, Chen V W and Fourkas J T 2005 Nano Lett. 5 1139
[72] Zhang Z X, Sonek G J, Wei X B, Sun C, Berns M W and Tromberg B J 1999 J. Biomed. Opt. 4 Zhanxiang Zhang; Gregory J. Sonek; Xunbin Wei; Chung-Ho Sun; Michael W. Berns; Bruce J. Tromberg
[73] Durr N J, Larson T, Smith D K, Korgel B A, Sokolov K and Ben-Yakar A 2007 Nano Lett. 7 941
[74] Imura K, Nagahara T and Okamoto H 2004 J. Am. Chem. Soc. 126 12730
[75] Biagioni P, Celebrano M, Savoini M, Grancini G, Brida D, Mátéfi-Tempfli S, Mátéfi-Tempfli M, Duó L, Hecht B, Cerullo G and Finazzi M 2009 Phys. Rev. B 80 045411
[76] Eichelbaum M, Schmidt B E, Ibrahim H and Rademann K 2007 Nanotechnology 18 355702
[77] Wang Q Q, Han J B, Guo D L, Xiao S, Han Y B, Gong H M and Zou X W 2007 Nano Lett. 7 723
[78] Biagioni P, Brida D, Huang J S, Kern J, Duo L, Hecht B, Finazzi M and Cerullo G 2012 Nano Lett. 12 2941
[79] Bouhelier A, Beversluis M R and Novotny L 2003 Appl. Phys. Lett. 83 5041
[80] Cheng Y Q, Zhang W D, Zhao J Y, Wen T, Hu A Q, Gong Q H and Lu G W 2018 Nanotechnology 29
[81] Sun C K, Vallée F, Acioli L, Ippen E P and Fujimoto J G 1993 Phys. Rev. B 48 12365
[82] Groeneveld R H M, Sprik R and Lagendijk A 1995 Phys. Rev. B 51 11433
[83] Sundararaman R, Narang P, Jermyn A S, Goddard W A and Atwater H A 2014 Nat. Commun. 5 5788
[84] Bernardi M, Mustafa J, Neaton J B and Louie S G 2015 Nat. Commun. 6 7044
[85] Brown A M, Sundararaman R, Narang P, Goddard W A, 3rd and Atwater H A 2016 ACS Nano 10 957
[86] Yamamoto N, Araya K and de Abajo F J G 2001 Phys. Rev. B 64 205419
[87] Yu A, Li S, Czap G and Ho W 2016 Nano Lett. 16 5433
[88] de Abajo F J G 2010 Rev. Mod. Phys. 82 209
[89] Atre A C, Brenny B J M, Coenen T, Garcia-Etxarri A, Polman A and Dionne J A 2015 Nat. Nanotechnol. 10 429
[90] Vesseur E J R, de Waele R, Kuttge M and Polman A 2007 Nano Lett. 7 2843
[91] Coenen T and Polman A 2014 ACS Nano 8 7350
[92] Coenen T, Vesseur E J, Polman A and Koenderink A F 2011 Nano Lett. 11 3779
[93] Berndt R, Gimzewski J K and Johansson P 1991 Phys. Rev. Lett. 67 3796
[94] Dong Z C, Zhang X L, Gao H Y, Luo Y, Zhang C, Chen L G, Zhang R, Tao X, Zhang Y, Yang J L and Hou J G 2010 Nat. Photon. 4 50
[95] Kravtsov V, Berweger S, Atkin J M and Raschke M B 2014 Nano Lett. 14 5270
[96] Le Moal E, Marguet S, Rogez B, Mukherjee S, Dos Santos P, Boer-Duchemin E, Comtet G and Dujardin G 2013 Nano Lett. 13 4198
[97] Lambe J and McCarthy S L 1976 Phys. Rev. Lett. 37 923
[98] Parzefall M, Bharadwaj P, Jain A, Taniguchi T, Watanabe K and Novotny L 2015 Nat. Nanotechnol. 10 1058
[99] Kern J, Kullock R, Prangsma J, Emmerling M, Kamp M and Hecht B 2015 Nat. Photon. 9 582
[100] Vardi Y, Cohen-Hoshen E, Shalem G and Bar-Joseph I 2016 Nano Lett. 16 748
[101] Gurunarayanan S P, Verellen N, Zharinov V S, Shirley F J, Moshchalkov V V, Heyns M, Van de Vondel J, Radu I P and Van Dorpe P 2017 Nano Lett. 17 7433
[102] Ward D R, Corley D A, Tour J M and Natelson D 2011 Nat. Nanotechnol. 6 33
[103] Dathe A, Ziegler M, Hubner U, Fritzsche W and Stranik O 2016 Nano Lett. 16 5728
[104] Ou M G, Lu G W, Shen H, Descamps A, Marquette C A, Blum L J, Ledoux G, Roux S, Tillement O, Cheng B L and Perriat P 2007 Adv. Funct. Mater. 17 1903
[105] Lee K H, Lai S F, Lin Y C, Chou W C, Ong E B L, Tan H R, Tok E S, Yang C S, Margaritondo G and Hwu Y 2014 Mater. Chem. Phys. 149 582
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Measuring stellar populations, dust attenuation and ionized gas at kpc scales in 10010 nearby galaxies using the integral field spectroscopy from MaNGA
Niu Li(李牛) and Cheng Li(李成). Chin. Phys. B, 2023, 32(3): 039801.
[3] Numerical simulation of a truncated cladding negative curvature fiber sensor based on the surface plasmon resonance effect
Zhichao Zhang(张志超), Jinhui Yuan(苑金辉), Shi Qiu(邱石), Guiyao Zhou(周桂耀), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), and Xinzhu Sang(桑新柱). Chin. Phys. B, 2023, 32(3): 034208.
[4] Fiber cladding dual channel surface plasmon resonance sensor based on S-type fiber
Yong Wei(魏勇), Xiaoling Zhao(赵晓玲), Chunlan Liu(刘春兰), Rui Wang(王锐), Tianci Jiang(蒋天赐), Lingling Li(李玲玲), Chen Shi(石晨), Chunbiao Liu(刘纯彪), and Dong Zhu(竺栋). Chin. Phys. B, 2023, 32(3): 030702.
[5] Thermally enhanced photoluminescence and temperature sensing properties of Sc2W3O12:Eu3+ phosphors
Yu-De Niu(牛毓德), Yu-Zhen Wang(汪玉珍), Kai-Ming Zhu(朱凯明), Wang-Gui Ye(叶王贵), Zhe Feng(冯喆), Hui Liu(柳挥), Xin Yi(易鑫), Yi-Huan Wang(王怡欢), and Xuan-Yi Yuan(袁轩一). Chin. Phys. B, 2023, 32(2): 028703.
[6] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[7] Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒). Chin. Phys. B, 2023, 32(1): 017901.
[8] Chiral lateral optical force near plasmonic ring induced by Laguerre-Gaussian beam
Ying-Dong Nie(聂英东), Zhi-Guang Sun(孙智广), and Yu-Rui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(1): 018702.
[9] LAMOST medium-resolution spectroscopic survey of binarity and exotic star (LAMOST-MRS-B): Observation strategy and target selection
Jiao Li(李蛟), Jiang-Dan Li(李江丹), Yan-Jun Guo(郭彦君), Zhan-Wen Han(韩占文), Xue-Fei Chen(陈雪飞), Chao Liu(刘超), Hong-Wei Ge(葛宏伟), Deng-Kai Jiang(姜登凯), Li-Fang Li(李立芳), Bo Zhang(章博), Jia-Ming Liu(刘佳明), Hao Tian(田浩), Hao-Tong Zhang(张昊彤), Hai-Long Yuan(袁海龙), Wen-Yuan Cui(崔文元),Juan-Juan Ren(任娟娟), Jing-Hao Cai(蔡靖豪), and Jian-Rong Shi(施建荣). Chin. Phys. B, 2023, 32(1): 019501.
[10] Electroluminescence explored internal behavior of carriers in InGaAsP single-junction solar cell
Xue-Fei Li(李雪飞), Wen-Xian Yang(杨文献), Jun-Hua Long(龙军华), Ming Tan(谭明), Shan Jin(金山), Dong-Ying Wu(吴栋颖), Yuan-Yuan Wu(吴渊渊), and Shu-Long Lu(陆书龙). Chin. Phys. B, 2023, 32(1): 017801.
[11] High-sensitivity methane monitoring based on quasi-fundamental mode matched continuous-wave cavity ring-down spectroscopy
Zhe Li(李哲), Shuang Yang(杨爽), Zhirong Zhang(张志荣), Hua Xia(夏滑), Tao Pang(庞涛),Bian Wu(吴边), Pengshuai Sun(孙鹏帅), Huadong Wang(王华东), and Runqing Yu(余润磬). Chin. Phys. B, 2022, 31(9): 094207.
[12] Selective formation of ultrathin PbSe on Ag(111)
Jing Wang(王静), Meysam Bagheri Tagani, Li Zhang(张力), Yu Xia(夏雨), Qilong Wu(吴奇龙), Bo Li(黎博), Qiwei Tian(田麒玮), Yuan Tian(田园), Long-Jing Yin(殷隆晶), Lijie Zhang(张利杰), and Zhihui Qin(秦志辉). Chin. Phys. B, 2022, 31(9): 096801.
[13] In situ study of calcite-III dimorphism using dynamic diamond anvil cell
Xia Zhao(赵霞), Sheng-Hua Mei(梅升华), Zhi Zheng(郑直), Yue Gao(高悦), Jiang-Zhi Chen(陈姜智), Yue-Gao Liu(刘月高), Jian-Guo Sun(孙建国), Yan Li(李艳), and Jian-Hui Sun(孙建辉). Chin. Phys. B, 2022, 31(9): 096201.
[14] Optical second-harmonic generation of Janus MoSSe monolayer
Ce Bian(边策), Jianwei Shi(史建伟), Xinfeng Liu(刘新风), Yang Yang(杨洋), Haitao Yang(杨海涛), and Hongjun Gao(高鸿钧). Chin. Phys. B, 2022, 31(9): 097304.
[15] Enhanced photoluminescence of monolayer MoS2 on stepped gold structure
Yu-Chun Liu(刘玉春), Xin Tan(谭欣), Tian-Ci Shen(沈天赐), and Fu-Xing Gu(谷付星). Chin. Phys. B, 2022, 31(8): 087803.
No Suggested Reading articles found!