|
|
Quantum uncertainty relations of quantum coherence and dynamics under amplitude damping channel |
Fugang Zhang(张福刚)1, Yongming Li(李永明)1,2 |
1 School of Mathematics and Information Science, Shaanxi Normal University, Xi'an 710119, China;
2 School of Computer Science, Shaanxi Normal University, Xi'an 710119, China |
|
|
Abstract In this paper, we discuss quantum uncertainty relations of quantum coherence through a different method from Ref. [52]. Some lower bounds with parameters and their minimal bounds are obtained. Moreover, we find that for two pairs of measurement bases with the same maximum overlap, quantum uncertainty relations and lower bounds with parameters are different, but the minimal bounds are the same. In addition, we discuss the dynamics of quantum uncertainty relations of quantum coherence and their lower bounds under the amplitude damping channel (ADC). We find that the ADC will change the uncertainty relations and their lower bounds, and their tendencies depend on the initial state.
|
Received: 08 April 2018
Revised: 23 June 2018
Accepted manuscript online:
|
PACS:
|
03.65.Ta
|
(Foundations of quantum mechanics; measurement theory)
|
|
03.65.Ud
|
(Entanglement and quantum nonlocality)
|
|
03.67.-a
|
(Quantum information)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11671244), the Higher School Doctoral Subject Foundation of Ministry of Education of China (Grant No. 20130202110001), and Fundamental Research Funds for the Central Universities, China (Grant No. 2016CBY003). |
Corresponding Authors:
Yongming Li
E-mail: liyongm@snnu.edu.cn
|
Cite this article:
Fugang Zhang(张福刚), Yongming Li(李永明) Quantum uncertainty relations of quantum coherence and dynamics under amplitude damping channel 2018 Chin. Phys. B 27 090301
|
[1] |
Koashi M 2009 New J. Phys. 11 045018
|
[2] |
Berta M, Christandl M, Colbeck R, Renes J M and Renner R 2010 Nat. Phys. 6 659
|
[3] |
Vallone G, Marangon D G, Tomasin M and Villoresi P 2014 Phys. Rev. A 90 052327
|
[4] |
Cao Z, Zhou H, Yuan X and Ma X 2016 Phys. Rev. X 6 011020
|
[5] |
Berta M, Coles P J and Wehner 2014 Phys. Rev. A 90 062127
|
[6] |
Walborn S P, Salles A, Gomes R M, Toscano F and Ribeiro P H S 2011 Phys. Rev. Lett. 106 130402
|
[7] |
Schneeloch J, Broadbent C J, Walborn S P, Cavalcanti E G and Howell J C 2013 Phys. Rev. A 87 062103
|
[8] |
Heisenberg W 1927 Physik Z 43 172
|
[9] |
Robertson H P 1929 Phys. Rev. 34 163
|
[10] |
Deutsch 1983 Phys. Rev. Lett. 50 631
|
[11] |
Maassen H and Uffink J B M 1988 Phys. Rev. Lett. 60 1103
|
[12] |
Puchała Z, Rudnicki L and Zyczkowski K 2013 J. Phys. A:Math. Theor. 46 272002
|
[13] |
Rudnicki L, Puchała Z and Zyczkowski K 2014 Phys. Rev. A 89 052115
|
[14] |
Kurzyk D, Pawela Ł and Puchała Z 2018 Quantum Inf. Process. 17 193
|
[15] |
Ma Z H, Chen Z H and Fei S M 2017 Sci. China-Phys. Mech. Astron. 60 010321
|
[16] |
Xiao Y, Guo C, Meng F, Jing N and Yung M H 2017 arXiv:1706.05650[quant-ph]
|
[17] |
Puchała Z, Rudnicki L, Krawiec A and Zyczkowski K 2018 J. Phys. A:Math. Theor. 51 175306
|
[18] |
Chen B, Cao N P, Fei S M and Long G L 2016 Quantum Inf. Proc. 15 3909
|
[19] |
Chen B, Fei S M, and Long G L 2016 Quantum Inf. Proc. 15 2639
|
[20] |
Scully M O and Zubairy M S 1997 Quantum Optics (Cambridge:Cambridge University Press)
|
[21] |
Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge:Cambridge University Press)
|
[22] |
Rodríguez-Rosario C A, Frauenheim T and Aspuru-Guzik A 2013 arXiv:1308.1245[quant-ph]
|
[23] |
Åberg J 2014 Phys. Rev. Lett. 113 150402
|
[24] |
Horodecki M and Oppenheim J 2013 Nat. Commun. 4 2059
|
[25] |
Lostaglio M, Korzekwa K, Jennings D and Rudolph T 2015 Phys. Rev. X 5 021001
|
[26] |
Narasimhachar V and Gour G 2015 Nat. Commun. 6 7689
|
[27] |
Baumgratz T, Cramer M and Plenio M B 2014 Phys. Rev. Lett. 113 140401
|
[28] |
Yu C S 2017 Phys. Rev. A 95 042337
|
[29] |
Streltsov A, Singh U, Dhar H S, Bera M N and Adesso G 2015 Phys. Rev. Lett. 115 020403
|
[30] |
Zhou Y, Zhao Q, Yuan X and Ma X 2017 New J. Phys. 19 123033
|
[31] |
Shao L H, Xi Z, Fan H and Li Y 2015 Phys. Rev. A 91 042120
|
[32] |
Napoli C, Bromley T R, Cianciaruso M, Piani M, Johnston N and Adesso G 2016 Phys. Rev. Lett. 116 150502
|
[33] |
Zhang Y R, Shao L H, Li Y and Fan H 2016 Phys. Rev. A 93 012334
|
[34] |
Yu X D, Zhang D J, Xu G F and Tong D M 2016 Phys. Rev. A 94 060302
|
[35] |
Yao Y, Xiao X, Ge L and Sun C P 2015 Phys. Rev. A 92 022112
|
[36] |
Du S, Bai Z and Guo Y 2015 Phys. Rev. A 91 052120
|
[37] |
Xi Z, Li Y and Fan H 2015 Sci. Rep. 5 10922
|
[38] |
Winter A and Yang D 2016 Phys. Rev. Lett. 116 120404
|
[39] |
Bromley T R, Cianciaruso M and Adesso G 2015 Phys. Rev. Lett. 114 210401
|
[40] |
Peng Y, Jiang Y and Fan H 2016 Phys. Rev. A 93 032326
|
[41] |
Brandão G S L F and Gour G 2015 Phys. Rev. Lett. 115 070503
|
[42] |
Liu Z W, Hu X and Lloyd S 2017 Phys. Rev. Lett. 118 060502
|
[43] |
Hu M L, Shen S Q and Fan H 2017 Phys. Rev. A 96 052309
|
[44] |
Hu M L, Hu X, Peng Y, Zhang Y R and Fan H 2017 arXiv:1703.01852[quant-ph]
|
[45] |
Streltsov A, Adesso G and Plenio M B 2017 Rev. Mod. Phys. 89 041003)
|
[46] |
Yang L W and Xia Y J 2016 Chin. Phys. B 25 110303
|
[47] |
Gao D Y, Gao Q and Xia Y J 2017 Chin. Phys. B 26 110303
|
[48] |
Liu Y, Zou H M and Fang M F 2018 Chin. Phys. B 27 010304
|
[49] |
Yang L W and Xia Y J 2017 Chin. Phys. B 26 080302
|
[50] |
Yang L W, Han W and Xia Y J 2018 Chin. Phys. B 27 040302
|
[51] |
Singh U, Pati A K and Bera M N 2016 Mathematics 4 47
|
[52] |
Yuan X, Bai G, Peng T and Ma X 2017 Phys. Rev. A 96 032313
|
[53] |
Zhang F G and Li Y M 2018 Sci. China-Phys. Mech. Astron. 61 080312
|
[54] |
Yuan X, Zhou H, Cao Z and Ma X 2015 Phys. Rev. A 92 022124
|
[55] |
Xu Z Y, Yang W L and Feng M 2012 Phys. Rev. A 86 012113
|
[56] |
Yao, C, Chen Z, Ma Z, Severini S and Serafini A 2014 Sci. China-Phys. Mech. Astron. 57 1703
|
[57] |
Guo Y N, Tian Q L and Zeng K 2017 Quantum Inf. Proc. 16 310
|
[58] |
Ming F, Wang D, Huang A J, Sun W Y and Ye L 2018 Quantum Inf. Proc. 17 9
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|