Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(1): 010304    DOI: 10.1088/1674-1056/28/1/010304
GENERAL Prev   Next  

Average fidelity estimation of twirled noisy quantum channel using unitary 2t-design

Linxi Zhang(张林曦)1,2, Changhua Zhu(朱畅华)1, Changxing Pei(裴昌幸)1
1 State Key Laboratory of Integrated Services Networks, Xidian University, Xi'an 710071, China;
2 Science and Technology on Communication Networks Laboratory, Shijiazhuang 050081, China
Abstract  

We propose a method to estimate the average fidelity using the unitary 2t-design of a twirled noisy channel, which is suitable for large-scale quantum circuits. Compared with the unitary 2-design in randomized benchmarking, the unitary 2t-design for the twirling of noisy channels is more flexible in construction and can provide more information. In addition, we prove that the proposed method provides an efficient and reliable estimation of the average fidelity in benchmarking multistage quantum gates and estimating the weakly gate- and time-dependent noise. For time-dependent noise, we provide a scheme of moment superoperator to analyze the noise in different experiments. In particular, we give a lower bound on the average fidelity of a channel with imperfect implementation of benchmarking and state preparation and measurement errors (SPAM).

Keywords:  quantum channel      average fidelity      unitary 2t-design  
Received:  09 July 2018      Revised:  04 November 2018      Accepted manuscript online: 
PACS:  03.65.Wj (State reconstruction, quantum tomography)  
  03.67.Lx (Quantum computation architectures and implementations)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 61372076 and 61701375), the 111 Project, China (Grant No. B08038), the Key Research and Development Plan of Shannxi Province, China (Grant No. BBD24017290001), and the Foundation of Science and Technology on Communication Networks Laboratory, China (Grant No. KX172600031).

Corresponding Authors:  Linxi Zhang     E-mail:  zhanglinxi@stu.xidian.edu.cn

Cite this article: 

Linxi Zhang(张林曦), Changhua Zhu(朱畅华), Changxing Pei(裴昌幸) Average fidelity estimation of twirled noisy quantum channel using unitary 2t-design 2019 Chin. Phys. B 28 010304

[1] Lidar D and Brunn T 2013 Quantum Error Correction (Cambridge:Cambridge University Press) pp. 142-157
[2] Aliferis P, Gottesman D and Preskill J 2005 Quantum Info. Comput. 6 97
[3] Kueng R, Long D M, Doherty A C and Flammia S T 2016 Phys. Rev. Lett. 117 170502
[4] D’Ariano G M, Paris M G A and Sacchi M F 2003 Advances in Imaging and Electron Physics 128 205
[5] Artiles L M, Gill R D and Guta M I Journal of Royal Statistical Society 2004 Journal of Royal Statistical Society 67 109
[6] Poyatos J F, Cirac J I and Zoller P 1997 Phys. Rev. Lett. 78 390
[7] Wei S J, Xin T and Long G L 2018 Sci. China-Phys. Mech. Astron. 61 070311
[8] Horodecki M, Horodecki P and Horodecki R 1998 Phys. Rev. A 60 1888
[9] Xu Y Y, Zhou F, Chen L, Xie Y, Xue P and Feng M 2012 Chin. Phys. B 21 040304
[10] Wu W, Liu X and Wang C 2018 Chin. Phys. B 27 060302
[11] Chen N, Quan D X, Xu F F, Yang H and Pei C X 2015 Chin. Phys. B 24 100307
[12] Blume-Kohout R, Gamble J K, Nielsen E, Rudinger K, Mizrahi J, Fortier K and Maunz P 2017 Nat. Commun. 8 14485
[13] Merkel S T, Gambetta J M, Smolin J A, Poletto S, Corcoles A D, Johnson B R, Ryan C A and Steffen M 2013 Phys. Rev. A 87 062119
[14] Knill E, Leibfried D, Reichle R, Ulm U, Britton J, Blakestad R B, Jost J D, Langer C, Ozeri R, Seidelin S and Wineland D J 2007 Phys. Rev. A 77 012307
[15] Magesan E, Gambetta J M and Emerson J 2010 Phys. Rev. Lett. 106 180504
[16] Gaebler J P, Meier A M, Tan T R, Bowler R, Lin Y, Hanneke D, Jost J D, Home J P, Knill E, Leibfried D and Wineland D J 2012 Phys. Rev. Lett. 108 260503
[17] Magesan E, Gambetta J M, Johnson B R, Ryan C A, Chow J M, Merkel S T, Silva M P, Keefe G A, Rothwell M B, Ohki T A, Ketchen M B and Steffen M 2012 Phys. Rev. Lett. 109 080505
[18] Magesan E, Gambetta J M, Emerson J 2012 Phys. Rev. A 85 042311
[19] Wallman J J and Flammia S T 2014 New J. Phys. 16 103032
[20] Wallman J J, Barnhill M, Emerson J 2016 New J. Phys. 18 043021
[21] Wallman J J and Emerson J 2016 Phys. Rev. A 94 052325
[22] Helsen J, Wallman J J, Flammia S T and Wehner S 2017 arXiv:1701.04299v1 [quant-ph]
[23] Proctor T, Rudingfer K, Young K, Sarovar M and Blume-Kohout R 2017 Phys. Rev. Lett. 119 130502
[24] Dankert C, Cleve R, Emerson J and Livine E 2006 Phys. Rev. A 80 012304
[25] Roy A and Scott A J 2009 Designs Codes and Cryptography 53 13
[26] Ambainis A, Mosca M, Tapp A and De Wolf D 2000 41st Annual Symposium on Foundations of Computer Science, 2000, Redondo Beach, California, p. 547
[27] Radhakrishnan J, Röetteler M and Sen P 2009 Algorithmica 55 490
[28] Ambainis A and Emerson J 2007 22nd Annual IEEE Conference on Computational Complexity, June, 13-16, 2007, San Diego, California, p. 129)
[29] Brown W G and Viola L 2009 Phys. Rev. Lett. 104 250501
[30] Bannai E and Bannai E 2009 European Journal of Combinatorics 30 1392
[31] Delsarte P, Goethals J M and Seidel J J 1991 Geometriae Dedicata 6 68
[32] Benedetto J J and Fickus M 2003 Advances in Computational Mathematics 18 357
[33] Gross D, Audenaert K and Eisert J 2007 Journal of Mathematical Physics 48 052104
[34] Emerson J, Alicki R and Zyczkowski K 2005 J. Opt. B: Quantum Semiclass. Opt. 7 347
[35] Goodman R and Wallach N R 2009 Symmetry, Representations, and Invariants (New York: Springer) pp. 180-181
[36] Hoeffding W 1963 J. Am. Statistical Assoc 58 13
[37] Sanders Y R, Wallman J J and Sanders B C 2016 New J. Phys. 18 012002
[1] Quantum dynamical resource theory under resource non-increasing framework
Si-Ren Yang(杨思忍) and Chang-Shui Yu(于长水). Chin. Phys. B, 2023, 32(4): 040305.
[2] Robustness of two-qubit and three-qubit states in correlated quantum channels
Zhan-Yun Wang(王展云), Feng-Lin Wu(吴风霖), Zhen-Yu Peng(彭振宇), and Si-Yuan Liu(刘思远). Chin. Phys. B, 2022, 31(7): 070302.
[3] Nonlocal advantage of quantum coherence in a dephasing channel with memory
Ming-Liang Hu(胡明亮), Yu-Han Zhang(张宇晗), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(3): 030308.
[4] Degenerate asymmetric quantum concatenated codes for correcting biased quantum errors
Ji-Hao Fan(樊继豪), Jun Li(李骏), Han-Wu Chen(陈汉武), and Wen-Jie Liu(刘文杰). Chin. Phys. B, 2021, 30(12): 120302.
[5] Protecting the entanglement of two-qubit over quantum channels with memory via weak measurement and quantum measurement reversal
Mei-Jiao Wang(王美姣), Yun-Jie Xia(夏云杰), Yang Yang(杨阳), Liao-Zhen Cao(曹连振), Qin-Wei Zhang(张钦伟), Ying-De Li(李英德), and Jia-Qiang Zhao(赵加强). Chin. Phys. B, 2020, 29(11): 110307.
[6] Quantum speed-up capacity in different types of quantum channels for two-qubit open systems
Wei Wu(吴薇), Xin Liu(刘辛), Chao Wang(王超). Chin. Phys. B, 2018, 27(6): 060302.
[7] Deterministic joint remote state preparation of arbitrary single- and two-qubit states
Chen Na (陈娜), Quan Dong-Xiao (权东晓), Xu Fu-Fang (徐馥芳), Yang Hong (杨宏), Pei Chang-Xing (裴昌幸). Chin. Phys. B, 2015, 24(10): 100307.
[8] Irreversibility of a quantum walk induced by controllable decoherence employing random unitary operations
Xu You-Yang(徐酉阳), Zhou Fei(周飞), Chen Liang(陈亮) Xie Yi(谢艺), Xue Peng(薛鹏), and Feng Mang(冯芒) . Chin. Phys. B, 2012, 21(4): 040304.
[9] Effects of Dzyaloshinski--Moriya interaction and intrinsic decoherence on teleportation via a two-qubit Heisenberg XYZ model
Hu Xiao-Mian(胡小勉) and Liu Jin-Ming(刘金明). Chin. Phys. B, 2009, 18(2): 411-417.
No Suggested Reading articles found!