Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(4): 040304    DOI: 10.1088/1674-1056/25/4/040304
GENERAL Prev   Next  

Fidelity between Gaussian mixed states with quantum state quadrature variances

Hai-Long Zhang(张海龙)1,2,3, Chun Zhou(周淳)1,2, Jian-Hong Shi(史建红)1,2, Wan-Su Bao(鲍皖苏)1,2
1 Zhengzhou Information Science and Technology Institute, Zhengzhou 450004, China;
2 Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China;
3 Science and Technology on Information Assurance Laboratory, Beijing 100071, China
Abstract  In this paper, from the original definition of fidelity in a pure state, we first give a well-defined expansion fidelity between two Gaussian mixed states. It is related to the variances of output and input states in quantum information processing. It is convenient to quantify the quantum teleportation (quantum clone) experiment since the variances of the input (output) state are measurable. Furthermore, we also give a conclusion that the fidelity of a pure input state is smaller than the fidelity of a mixed input state in the same quantum information processing.
Keywords:  fidelity      mixed state      quantum clone      quantum information processing  
Received:  23 April 2015      Revised:  30 November 2015      Accepted manuscript online: 
PACS:  03.67.Lx (Quantum computation architectures and implementations)  
  03.67.Ac (Quantum algorithms, protocols, and simulations)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2013CB338002) and the Foundation of Science and Technology on Information Assurance Laboratory (Grant No. KJ-14-001).
Corresponding Authors:  Hai-Long Zhang     E-mail:  zhhl049@126.com

Cite this article: 

Hai-Long Zhang(张海龙), Chun Zhou(周淳), Jian-Hong Shi(史建红), Wan-Su Bao(鲍皖苏) Fidelity between Gaussian mixed states with quantum state quadrature variances 2016 Chin. Phys. B 25 040304

[1] Wan Z L, Fan H Y and Wang Z 2015 Chin. Phys. B 24 0120301
[2] Zhang G P, Zheng K M, Liu S Y and Hu L Y 2014 Chin. Phys. B 23 050301
[3] Wu S, Liang L M and Li C Z 2007 Chin. Phys. 16 1229
[4] Peters N A, Wei T C, and Paul G K 2004 Phys. Rev. A 70 052309
[5] Schumacher B 1995 Phys. Rev. A 51 2738
[6] Jozsa R 1994 J. Mod. Opt. 41 2315
[7] Uhlmann A 1976 Rep. Math. Phys. 9 273
[8] Schumacher B 1996 Phys. Rev. A 54 2614
[9] Braunstein S L, Fuchs C A and Kimble H J 2000 J. Mod. Opt. 47 267
[10] Braunstein S L, Fuchs C A, Kimble H J and Loock P V 2001 Phys. Rev. A 64 022321
[11] Hammerer K, Wolf M M, Polzik E S and Cirac J I 2005 Phys. Rev. Lett. 94 150503
[12] Ban M 2004 Phys. Rev. A 69 054304
[13] Grosshans F and Grangier P 2001 Phys. Rev. A 64 010301
[14] Furusawa A, Srensen J L, Braunstein S L, Fuchs C A, Kimble H J and Polzik E S 1998 Science 282 706
[15] Aharonov Y and Albert D 1981 Phys. Rev. D 24 359
[16] Grangier P and Grosshans F 2001 e-print quant-ph/0010107
[17] Zhang H L, Liang W D, Liu K, Zhang J X and Gao J R 2012 J. Phys. B: At. Mol. Opt. Phys. 45 115501
[18] Bowen W P, Treps N, Buchler B C, Schnabel R, Ralph T C and Bachor H A 2003 Phys. Rev. A 67 032302
[19] Zhang T C, Goh K W, Chou C W, Lodahl P and Kimble H J 2003 Phys. Rev. A 67 033802
[20] Zhai Z H, Li Y M, Wang S K, Guo J, Zhang T C and Gao J R 2005 Acta Phys. Sin. 54 2710 (in Chinese)
[21] Takei N, Yonezawa H, Aoki T and Furusawa A 2005 Phys. Rev. Lett. 94 220502
[22] Jia X J, Su X L, Pan Q, Gao J R, Xie C D and Peng K C 2004 Phys. Rev. Lett. 93 250503
[23] Glöckl O, Lorenz S, Marquardt C, Heersink J, Brownnutt M, Silberhorn C, Pan Q, Loock P V, Korolkova N and Leuchs G 2003 Phys. Rev. A 68 012319
[24] Lee N, Benichi H, Takeno Y, Takeda S, Webb J, Huntington E and Furusawa A 2011 Science 332 330
[25] Andersen U L, Josse V and Leuchs G 2005 Phys. Rev. Lett. 94 240503
[26] Takei N, Aoki T, Koike S, Yoshino K, Wakui K, Yonezawa H, Hiraoka T, Mizuno J, Takeoka M, Ban M and Furusawa A 2005 Phys. Rev. A 72 042304
[27] Mista L, Filip R and Furusawa A 2010 Phys. Rev. A 82 012322
[1] Engineering topological state transfer in four-period Su-Schrieffer-Heeger chain
Xi-Xi Bao(包茜茜), Gang-Feng Guo(郭刚峰), and Lei Tan(谭磊). Chin. Phys. B, 2023, 32(2): 020301.
[2] Universal order-parameter and quantum phase transition for two-dimensional q-state quantum Potts model
Yan-Wei Dai(代艳伟), Sheng-Hao Li(李生好), and Xi-Hao Chen(陈西浩). Chin. Phys. B, 2022, 31(7): 070502.
[3] Experimental realization of quantum controlled teleportation of arbitrary two-qubit state via a five-qubit entangled state
Xiao-Fang Liu(刘晓芳), Dong-Fen Li(李冬芬), Yun-Dan Zheng(郑云丹), Xiao-Long Yang(杨小龙), Jie Zhou(周杰), Yu-Qiao Tan(谭玉乔), and Ming-Zhe Liu(刘明哲). Chin. Phys. B, 2022, 31(5): 050301.
[4] Alternative non-Gaussianity measures for quantum states based on quantum fidelity
Cheng Xiang(向成), Shan-Shan Li(李珊珊), Sha-Sha Wen(文莎莎), and Shao-Hua Xiang(向少华). Chin. Phys. B, 2022, 31(3): 030306.
[5] Passively stabilized single-photon interferometer
Hai-Long Liu(刘海龙), Min-Jie Wang(王敏杰), Jia-Xin Bao(暴佳鑫), Chao Liu(刘超), Ya Li(李雅), Shu-Jing Li(李淑静), and Hai Wang(王海). Chin. Phys. B, 2022, 31(11): 110306.
[6] Controlled quantum teleportation of an unknown single-qutrit state in noisy channels with memory
Shexiang Jiang(蒋社想), Bao Zhao(赵宝), and Xingzhu Liang(梁兴柱). Chin. Phys. B, 2021, 30(6): 060303.
[7] Realization of adiabatic and diabatic CZ gates in superconducting qubits coupled with a tunable coupler
Huikai Xu(徐晖凯), Weiyang Liu(刘伟洋), Zhiyuan Li(李志远), Jiaxiu Han(韩佳秀), Jingning Zhang(张静宁), Kehuan Linghu(令狐克寰), Yongchao Li(李永超), Mo Chen(陈墨), Zhen Yang(杨真), Junhua Wang(王骏华), Teng Ma(马腾), Guangming Xue(薛光明), Yirong Jin(金贻荣), and Haifeng Yu(于海峰). Chin. Phys. B, 2021, 30(4): 044212.
[8] Fast achievement of quantum state transfer and distributed quantum entanglement by dressed states
Liang Tian(田亮), Li-Li Sun(孙立莉), Xiao-Yu Zhu(朱小瑜), Xue-Ke Song(宋学科), Lei-Lei Yan(闫磊磊), Er-Jun Liang(梁二军), Shi-Lei Su(苏石磊), Mang Feng(冯芒). Chin. Phys. B, 2020, 29(5): 050306.
[9] Error-detected single-photon quantum routing using a quantum dot and a double-sided microcavity system
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), Shou Zhang(张寿). Chin. Phys. B, 2019, 28(2): 020301.
[10] Average fidelity estimation of twirled noisy quantum channel using unitary 2t-design
Linxi Zhang(张林曦), Changhua Zhu(朱畅华), Changxing Pei(裴昌幸). Chin. Phys. B, 2019, 28(1): 010304.
[11] Estimation of photon counting statistics with imperfect detectors
Xiao-Chuan Han(韩晓川), Dong-Wei Zhuang(庄东炜), Yu-Xuan Li(李雨轩), Jun-Feng Song(宋俊峰), Yong-Sheng Zhang(张永生). Chin. Phys. B, 2018, 27(7): 074208.
[12] Quantum information processing with nitrogen-vacancy centers in diamond
Gang-Qin Liu(刘刚钦), Xin-Yu Pan(潘新宇). Chin. Phys. B, 2018, 27(2): 020304.
[13] Identifying the closeness of eigenstates in quantum many-body systems
Hai-bin Li(李海彬), Yang Yang(杨扬), Pei Wang(王沛), Xiao-guang Wang(王晓光). Chin. Phys. B, 2017, 26(8): 080502.
[14] Experimentally testing Hardy's theorem on nonlocality with entangled mixed states
Dai-He Fan(樊代和), Mao-Chun Dai(戴茂春), Wei-Jie Guo(郭伟杰), Lian-Fu Wei(韦联福). Chin. Phys. B, 2017, 26(4): 040302.
[15] Probabilistic direct counterfactual quantum communication
Sheng Zhang(张盛). Chin. Phys. B, 2017, 26(2): 020304.
No Suggested Reading articles found!