|
|
High-order harmonic generation in a two-color strong laser field with Bohmian trajectory theory |
Yi-Yi Huang(黄祎祎)1,2, Xuan-Yang Lai(赖炫扬)1, Xiao-Jun Liu(柳晓军)1 |
1 State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract We theoretically study the high-order harmonic generation (HHG) in a two-color laser field using the Bohmian mechanics. Our results show that, for the case of a weak second-color laser field, the simulation of the HHG with only one central Bohmian trajectory is in a good agreement with the ab initio time-dependent Schrödinger equation (TDSE) results. In contrast, with the increase of the amplitude of the second-color laser field, the HHG spectra from the single central Bohmian trajectory deviate from the TDSE results more and more significantly. By analyzing the Bohmian trajectories, we find that the significant deviation is due to the fact that the central Bohmian trajectory leaves the core quickly in the two-color laser field with the breaking of inversion symmetry. Interestingly, we find that another Bohmian trajectory with different initial position, which keeps oscillating around the core, could qualitatively well reproduce the TDSE results. Furthermore, we study the HHG spectrum in a two-color laser field with inversion symmetry and find that the HHG spectrum in TDSE can be still well simulated with the central Bohmian trajectory. These results indicate that, similar to the case of one color laser field, the HHG spectra in a two-color laser field can be also reproduced with a single Bohmian trajectory, although the initial position of the trajectory is dependent on the symmetry of the laser field. Our work thus demonstrates that Bohmian trajectory theory can be used as a promising tool in investigating the HHG process in a two-color laser field.
|
Received: 23 May 2018
Accepted manuscript online:
|
PACS:
|
32.80.Rm
|
(Multiphoton ionization and excitation to highly excited states)
|
|
33.80.Wz
|
(Other multiphoton processes)
|
|
42.50.Hz
|
(Strong-field excitation of optical transitions in quantum systems; multiphoton processes; dynamic Stark shift)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11334009, 11474321, and 11527807). |
Corresponding Authors:
Xuan-Yang Lai, Xiao-Jun Liu
E-mail: xylai@wipm.ac.cn;xjliu@wipm.ac.cn
|
Cite this article:
Yi-Yi Huang(黄祎祎), Xuan-Yang Lai(赖炫扬), Xiao-Jun Liu(柳晓军) High-order harmonic generation in a two-color strong laser field with Bohmian trajectory theory 2018 Chin. Phys. B 27 073204
|
[1] |
Ferray M, L'Huillier A, Li X F, Lomprè L A, Mainfray G and Manus C 1988 J. Phys. B-At. Mol. Opt. 21 L31
|
[2] |
Spielmann C, Burnett N H, Sartania S, Koppitsch R, Schnurer M, Kan C, Lenzner M, Wobrauschek P and Krausz F 1997 Science 278 661
|
[3] |
Paul P M, Toma E S, Breger P, Mullot G, Auge F, Balcou P, Muller H G and Agostini P 2001 Science 292 1689
|
[4] |
Sansone G, Benedetti E, Calegari F, Vozzi C, Avaldi L, Flammini R, Poletto L, Villoresi P, Altucci C, Velotta R, Stagira S, De Silvestri S and Nisoli M 2006 Science 314 443
|
[5] |
Zhao K, Zhang Q, Chini M, Wu Y, Wang X and Chang Z 2012 Opt. Lett. 37 3891
|
[6] |
Itatani J, Levesque J, Zeidler D, Niikura Hiromichi, Pèpin H, Kieffer J C, Corkum P B and Villeneuve D M 2004 Nature 432 867
|
[7] |
Smirnova O, Mairesse Y, Patchkovskii S, Dudovich N, Villeneuve D, Corkum P and Ivanov M Y 2009 Nature 460 972
|
[8] |
Shiner A D, Schmidt B E, Trallero-Herrero C, Wörner H J, Patchkovskii S, Corkum P B, Kieffer J C, Lègarè F and Villeneuve D M 2011 Nat. Phys. 7 464
|
[9] |
Schafer K J, Yang B, DiMauro L F and Kulander K C 1993 Phys. Rev. Lett. 70 1599
|
[10] |
Corkum P B 1993 Phys. Rev. Lett. 71 1994
|
[11] |
Jin C, Wang G, Wei H, Le A T and Lin C D 2014 Nat. Commun. 5 4003
|
[12] |
Brugnera L, Hoffmann D J, Siegel T, Frank F, Zaïr A, Tisch J W G and Marangos J P 2011 Phys. Rev. Lett. 107 153902
|
[13] |
Fleischer A, Kfir O, Diskin T, Sidorenko P and Cohen O 2014 Nat. Photonics 8 543
|
[14] |
Kfir O, Grychtol P, Turgut E, Knut R, Zusin D, Popmintchev D, Popmintchev T, Nembach H, Shaw J M, Fleischer A, Kapteyn H, Murnane M and Cohen O 2015 Nat. Photonics 9 99
|
[15] |
Lewenstein M, Balcou Ph, Ivanov M Y, L'Huillier A and Corkum P B 1994 Phys. Rev. A 49 2117
|
[16] |
Milošević D B and Becker W 2002 Phys. Rev. A 66 063417
|
[17] |
Figueira de Morisson Faria C 2007 Phys. Rev. A 76 043407
|
[18] |
Zhang H D, Guo J, Shi Y, Du H, Liu H F, Huang X R, Liu X S and Jing J 2017 Chin. Phys. Lett. 34 014206
|
[19] |
Bohm D 1952 Phys. Rev. 85 166
|
[20] |
Bohm D 1952 Phys. Rev. 85 180
|
[21] |
Holland P R 1993 The Quantum Theory of Motion (Cambridge:Cambridge University Press) pp. 66-70
|
[22] |
Śanz Angel S and Miret-Artès S 2012 A Trajectory Description of Quantum Processes. I. Fundamentals (New York:Springer) pp. 69-71
|
[23] |
Śanz Angel S and Miret-Artès S 2013 A Trajectory Description of Quantum Processes. Ⅱ. Applications (New York:Springer) pp. 73-81
|
[24] |
Lai X Y, Cai Q Y and Zhan M S 2009 Eur. Phys. J. D 53 393
|
[25] |
Lai X Y, Cai Q Y and Zhan M S 2009 New J. Phys. 11 113035
|
[26] |
Lai X Y, Cai Q Y and Zhan M S 2010 Chin. Phys. B 19 020302
|
[27] |
Picón A, Benseny A, Mompart J, Vazquez de Aldana J R, Plaja L, Calvo G F and Roso L 2010 New J. Phys. 12 083053
|
[28] |
Botheron P and Pons B 2009 Phys. Rev. A 80 023402
|
[29] |
Botheron P and Pons B 2010 Phys. Rev. A 82 021404
|
[30] |
Takemoto N and Becker A 2011 J. Chem. Phys. 134 074309
|
[31] |
Song Y, Guo F M, Li S Y, Chen J G, Zeng S L and Yang Y J 2012 Phys. Rev. A 86 033424
|
[32] |
Song Y, Li S Y, Liu X S, Guo F M and Yang Y J 2013 Phys. Rev. A 88 053419
|
[33] |
Wu J, Augstein B B and Figueira de Morisson Faria C 2013 Phys. Rev. A 88 023415
|
[34] |
Wu J, Augstein B B and Figueira de Morisson Faria C 2013 Phys. Rev. A 88 063416
|
[35] |
Wei S S, Li S Y, Guo F M, Yang Y J and Wang B 2013 Phys. Rev. A 87 063418
|
[36] |
Sawada R, Sato T and Ishikawa K L 2014 Phys. Rev. A 90 023404
|
[37] |
Jooya H Z, Telnov D A, Li P C and Chu S I 2015 Phys. Rev. A 91 063412
|
[38] |
Wang J, Wang B B, Guo F M, Li S Y, Ding D J, Chen J G, Zeng S L and Yang Y J 2014 Chin. Phys. B 23 053201
|
[39] |
Song Y, Zhao S, Guo F M, Yang Y J and Li S Y 2016 Chin. Phys. B 25 033204
|
[40] |
Feit M D, Fleck J A and Stieger A 1982 J. Comput. Phys. 7 412
|
[41] |
Press W H, Teukolsky S A, Vetterling W T and Flannery B P 1992 Numerical Recipes in Fortran 77:The Art of Scientific Computing, 2nd edn. (Cambridge:Cambridge University Press) p. 51
|
[42] |
Kim I J, Kim C M, Kim H T, Lee G H, Lee Y S, Park J Y, Cho D J and Nam C H 2005 Phys. Rev. Lett. 94 243901
|
[43] |
Liu T T, Kanai T, Sekikawa T and Watanabe S 2006 Phys. Rev. A 73 063823
|
[44] |
Frolov M V, Manakov N L, Silaev A A and Vvedenskii N V 2010 Phys. Rev. A 81 063407
|
[45] |
Kraus P M, Rupenyan A and Wörner H J 2012 Phys. Rev. Lett. 109 233903
|
[46] |
Li Y P, Yu S J, Li W Y and Chen Y J 2017 Phys. Rev. A 95 063412
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|