Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(8): 080503    DOI: 10.1088/1674-1056/23/8/080503
GENERAL Prev   Next  

Stochastic resonance in an over-damped linear oscillator

Lin Li-Feng (林丽烽)a b, Tian Yan (田艳)c, Ma Hong (马洪)b
a College of Computer and Information Sciences, Fujian Agriculture and Forestry Uninversity, Fuzhou 350002, China;
b Department of Mathematics, Sichuan University, Chengdu 610065, China;
c School of Sciences, Southwest Petroleum University, Chengdu 610500, China
Abstract  For an over-damped linear system subjected to both parametric excitation of colored noise and external excitation of periodically modulated noise, and in the case that the cross-correlation intensity between noises is a time-periodic function, we study the stochastic resonance (SR) in this paper. Using the Shapiro-Loginov formula, we acquire the exact expressions of the first-order and the second-order moments. By the stochastic averaging method, we obtain the analytical expression of the output signal-to-noise ratio (SNR). Meanwhile, we discuss the evolutions of the SNR with the signal frequency, noise intensity, correlation rate of noise, time period, and modulation frequency. We find a new bona fide SR. The evolution of the SNR with the signal frequency presents periodic oscillation, which is not observed in a conventional linear system. We obtain the conventional SR of the SNR with the noise intensity and the correlation rate of noise. We also obtain the SR in a wide sense, in which the evolution of the SNR with time period modulation frequency presents periodic oscillation. We find that the time-periodic modulation of the cross-correlation intensity between noises diversifies the stochastic resonance phenomena and makes this system possess richer dynamic behaviors.
Keywords:  stochastic resonance      signal-to-noise ratio      periodically modulated noise      cross-correlation intensity between noises  
Received:  18 December 2013      Revised:  18 February 2014      Accepted manuscript online: 
PACS:  05.40.-a (Fluctuation phenomena, random processes, noise, and Brownian motion)  
  05.40.Ca (Noise)  
  02.50.-r (Probability theory, stochastic processes, and statistics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11171238), the Young Teacher Fund of Fujian Agriculture and Forestry Uninversity, China (Grant No. 2011XJJ23), and the Science and Technology Project of the Education Department of Sichuan Province, China (Grant No. 14ZA0050).
Corresponding Authors:  Ma Hong     E-mail:  mahong@scu.edu.cn

Cite this article: 

Lin Li-Feng (林丽烽), Tian Yan (田艳), Ma Hong (马洪) Stochastic resonance in an over-damped linear oscillator 2014 Chin. Phys. B 23 080503

[1] Benzi R, Sutera A and Vulpliani A 1981 J. Phys. A: Math. Gen. 14 L453
[2] Gitterman M 2005 Phys. Stat. Mech. Appl. 352 309
[3] Gitterman M 2003 Phys. Rev. E 67 057103
[4] Jia Y, Yu S N and Li J R 2000 Phys. Rev. E 62 1869
[5] Luo X Q and Zhu S Q 2003 Phys. Rev. E 67 021104
[6] Katrin L, Romi M and Astrid R 2009 Phys. Rev. E 79 051128
[7] Li D S and Li J H 2010 Commun. Theor. Phys. 53 298
[8] Jin Y F and Hu H Y 2009 Acta Phys. Sin. 58 2895 (in Chinese)
[9] Xu W, Jin Y F, Xu M and Li W 2005 Acta Phys. Sin. 54 5027 (in Chinese)
[10] Zhou B C and Xu W 2007 Acta Phys. Sin. 56 5623 (in Chinese)
[11] Zhang L Y, Jin G X and Chao L 2011 Acta Phys. Sin. 60 044207 (in Chinese)
[12] Tu Z, Peng H, Wang F and Ma H 2013 Acta Phys. Sin. 62 030502 (in Chinese)
[13] Fulinski A and Telejko T 1991 Phys. Lett. A 152 11
[14] Zhou B C and Xu W 2008 Acta Phys. Sin. 57 2035 (in Chinese)
[15] Zhang L, Zhong S C, Peng H and Luo M K 2012 Acta Phys. Sin. 61 130503 (in Chinese)
[16] Tian Y, Huang L and Luo M K 2013 Acta Phys. Sin. 62 050502 (in Chinese)
[17] Chen D Y and Wang Z L 2009 Acta Phys. Sin. 58 1403 (in Chinese)
[18] Chen D Y and Zhang L 2009 Chin. Phys. B 18 1755
[19] Tessone C J and Wio H S 1998 Mod. Phys. Lett. B 12 1195
[20] Tessone C J, Wio H S and Hanggi P 2000 Phys. Rev. E 62 4623
[21] Gammaitoni L, Marchesoni F and Santucci S 1995 Phys. Rev. Lett. 74 1052
[22] Shapiro V E and Loginov V M 1978 Physica A 91 563
[23] Fulinski A 1995 Phys. Rev. E 52 4523
[24] Gardiner C W 1983 Handbook of Stochastic Processes (Berlin: Springer) p. 86
[1] Inverse stochastic resonance in modular neural network with synaptic plasticity
Yong-Tao Yu(于永涛) and Xiao-Li Yang(杨晓丽). Chin. Phys. B, 2023, 32(3): 030201.
[2] Realizing reliable XOR logic operation via logical chaotic resonance in a triple-well potential system
Huamei Yang(杨华美) and Yuangen Yao(姚元根). Chin. Phys. B, 2023, 32(2): 020501.
[3] Inhibitory effect induced by fractional Gaussian noise in neuronal system
Zhi-Kun Li(李智坤) and Dong-Xi Li(李东喜). Chin. Phys. B, 2023, 32(1): 010203.
[4] Hyperparameter on-line learning of stochastic resonance based threshold networks
Weijin Li(李伟进), Yuhao Ren(任昱昊), and Fabing Duan(段法兵). Chin. Phys. B, 2022, 31(8): 080503.
[5] Signal-to-noise ratio of Raman signal measured by multichannel detectors
Xue-Lu Liu(刘雪璐), Yu-Chen Leng(冷宇辰), Miao-Ling Lin(林妙玲), Xin Cong(从鑫), and Ping-Heng Tan(谭平恒). Chin. Phys. B, 2021, 30(9): 097807.
[6] A sign-function receiving scheme for sine signals enhanced by stochastic resonance
Zhao-Rui Li(李召瑞), Bo-Hang Chen(陈博航), Hui-Xian Sun(孙慧贤), Guang-Kai Liu(刘广凯), and Shi-Lei Zhu(朱世磊). Chin. Phys. B, 2021, 30(8): 080502.
[7] Collective stochastic resonance behaviors of two coupled harmonic oscillators driven by dichotomous fluctuating frequency
Lei Jiang(姜磊), Li Lai(赖莉), Tao Yu(蔚涛), Maokang Luo(罗懋康). Chin. Phys. B, 2021, 30(6): 060502.
[8] Time-varying coupling-induced logical stochastic resonance in a periodically driven coupled bistable system
Yuangen Yao(姚元根). Chin. Phys. B, 2021, 30(6): 060503.
[9] Blind parameter estimation of pseudo-random binary code-linear frequency modulation signal based on Duffing oscillator at low SNR
Ke Wang(王珂), Xiaopeng Yan(闫晓鹏), Ze Li(李泽), Xinhong Hao(郝新红), and Honghai Yu(于洪海). Chin. Phys. B, 2021, 30(5): 050708.
[10] Asymmetric stochastic resonance under non-Gaussian colored noise and time-delayed feedback
Ting-Ting Shi(石婷婷), Xue-Mei Xu(许雪梅), Ke-Hui Sun(孙克辉), Yi-Peng Ding(丁一鹏), Guo-Wei Huang(黄国伟). Chin. Phys. B, 2020, 29(5): 050501.
[11] Novel Woods-Saxon stochastic resonance system for weak signal detection
Yong-Hui Zhou(周永辉), Xue-Mei Xu(许雪梅), Lin-Zi Yin(尹林子), Yi-Peng Ding(丁一鹏), Jia-Feng Ding(丁家峰), Ke-Hui Sun(孙克辉). Chin. Phys. B, 2020, 29(4): 040503.
[12] Noise properties of multi-combination information in x-ray grating-based phase-contrast imaging
Wali Faiz, Ji Li(李冀), Kun Gao(高昆), Zhao Wu(吴朝), Yao-Hu Lei(雷耀虎), Jian-Heng Huang(黄建衡), Pei-Ping Zhu(朱佩平). Chin. Phys. B, 2020, 29(1): 014301.
[13] Stochastic resonance in an under-damped bistable system driven by harmonic mixing signal
Yan-Fei Jin(靳艳飞). Chin. Phys. B, 2018, 27(5): 050501.
[14] Optimization of pick-up coils for weakly damped SQUID gradiometers
Kang Yang(杨康), Jialei Wang(王佳磊), Xiangyan Kong(孔祥燕), Ruihu Yang(杨瑞虎), Hua Chen(陈桦). Chin. Phys. B, 2018, 27(5): 050701.
[15] Stochastic resonance and synchronization behaviors of excitatory-inhibitory small-world network subjected to electromagnetic induction
Xiao-Han Zhang(张晓函), Shen-Quan Liu(刘深泉). Chin. Phys. B, 2018, 27(4): 040501.
No Suggested Reading articles found!