|
|
Chaos generation by a hybrid integrated chaotic semiconductor laser |
Ming-Jiang Zhang(张明江)1,2, Ya-Nan Niu(牛亚楠)1,2, Tong Zhao(赵彤)1,2, Jian-Zhong Zhang(张建忠)1,2, Yi Liu(刘毅)1,2, Yu-Hang Xu(徐雨航)1,2, Jie Meng(孟洁)1,2, Yun-Cai Wang(王云才)1,2, An-Bang Wang(王安帮)1,2 |
1 Key Laboratory of Advanced Transducers and Intelligent Control System, Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, China; 2 Institute of Optoelectronic Engineering, College of Physics & Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, China |
|
|
Abstract We design a hybrid integrated chaotic semiconductor laser with short-cavity optical feedback. It can be assembled in a commercial butterfly shell with just three micro-lenses. One of them is coated by a transflective film to provide the optical feedback for chaos generation while insuring regular laser transmission. We prove the feasibility of the chaos generation in this compact structure and provide critical external parameters for the fabrication by theoretical simulations. Rather than the usual changeless internal parameters used in previous simulation research, we extract the real parameters of the chip by experiment. Moreover, the maps of the largest Lyapunov exponent with varying bias current and feedback intensity Kap demonstrate the dynamic characteristics under different external-cavity conditions. Each laser chip has its own optimal external cavity length (L) and feedback intensity (Kap) to generate chaos because of the different internal parameters. We have acquired two ranges of optimal parameters (L=4 mm, 0.12 < Kap < 0.2 and L=5 mm, 0.07 < Kap < 0.12) for two different chips.
|
Received: 13 November 2017
Revised: 06 February 2018
Accepted manuscript online:
|
PACS:
|
05.45.-a
|
(Nonlinear dynamics and chaos)
|
|
42.82.-m
|
(Integrated optics)
|
|
42.55.Px
|
(Semiconductor lasers; laser diodes)
|
|
Fund: Project supported by the International Science and Technology Cooperation Program of China (Grant No.2014DFA50870),the National Natural Science Foundation of China (Grant Nos.61377089,61475111,and 61527819),Shanxi Province Natural Science Foundation,China (Grant No.2015011049),Shanxi Province Youth Science and Technology Foundation,China (Grant No.201601D021069),Shanxi Scholarship Council of China (Grant No.2016-036),Program for the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi,China,and Program for Sanjin Scholar,China. |
Corresponding Authors:
Ming-Jiang Zhang, An-Bang Wang
E-mail: zhangmingjiang@tyut.edu.cn;wanganbang@tyut.edu.cn
|
Cite this article:
Ming-Jiang Zhang(张明江), Ya-Nan Niu(牛亚楠), Tong Zhao(赵彤), Jian-Zhong Zhang(张建忠), Yi Liu(刘毅), Yu-Hang Xu(徐雨航), Jie Meng(孟洁), Yun-Cai Wang(王云才), An-Bang Wang(王安帮) Chaos generation by a hybrid integrated chaotic semiconductor laser 2018 Chin. Phys. B 27 050502
|
[13] |
Li Y, Xu K, Yang B J, Yuan Y and Wu N 2008 Acta Phys. Sin. 57 3353(in Chinese)
|
[1] |
Argyris A, Syvrids D, Larger L, Lodi V A, Colet P, Fischer I, Ojalvo J G, Mirasso C R, Pesquera L and Shore K A 2005 Nature 438 343
|
[14] |
Ma Z, Zhang M J, Liu Y, Bao X Y, Liu H, Zhang Y N and Wang Y C 2015 IEEE Photon. J. 7 6100407
|
[2] |
Xiang S Y, Wen A J and Pan W 2016 IEEE Photon. Technol. Lett. 28 1988
|
[15] |
Yi H, Xa L, Xu J, Yu C, Wu Y, Li C and Zhu L 2017 IEEE Photon. J. 9 6803809
|
[3] |
Kanter I, Aviad Y, Reidler I, Cohen E and Rosenbluh M 2010 Nat. Photonics Photon. 4 58
|
[16] |
Zhang M J, Liu H, Zhang J Z, Liu Y and Liu R X 2017 IEEE Photon. J. 9 1600610
|
[4] |
Li P, Zhang J G, Sang L X, Liu X L, Guo Y Q, Wang A B, Shore K A and Wang Y C 2017 Opt. Lett. 42 2699
|
[17] |
Zhang J Z, Zhang M T, Zhang M J, Liu Y, Feng C K, Wang Y H and Wang Y C 2018 Opt. Lett. 43
|
[5] |
Shinohara S, Aenichi A, Davis P, Sunada A and Harayama T 2017 Opt. Express 25 6461
|
[18] |
Ji Y N, Zhang M J, Wang Y C, Wang P, Wang A B, Wu Y, Xu H and Zhang Y N 2014 Int. J. Bifurcation and Chaos 24 1450032
|
[6] |
Zhang M J, Ji Y N, Zhang Y N, Wu Y, Xu H and Xu W P 2014 IEEE Photon. J. 6 7902412
|
[19] |
Yan S L 2016 Chin. Phys. B 25 090504
|
[20] |
Yan S L 2014 Chin. Phys. B 23 090503
|
[7] |
Wang L S, Guo Y Y, Li P, Zhao T, Wang Y C and Wang A B 2017 IEEE Photon. Technol. Lett. 29 1723
|
[8] |
Ji Y N, Zhang M J, Wang Y C, Wang P, Wang A B, Wu Y, Xu H and Zhang Y N 2014 Int. J. Bifurcation and Chaos 24 1450032
|
[21] |
Sciamanna M and Shore K A 2015 Nat. Photon. 9 151
|
[22] |
Dou X, Wu C, Chen X, Yin H, Zhao Q, Hao Y and Zhao N 2014 Chin. Opt. Lett. 12 S10610
|
[9] |
Wang Y C, Wang B J and Wang A B 2008 IEEE Photon. Technol. Lett. 20 1636
|
[10] |
Zhao T, Han H, Zhang J G, Liu X L, Chang X M, Wang A B and Wang Y C 2015 IEEE Photon. J. 7 6083909
|
[23] |
Yang L, Pan W, Yan L, Luo B, Mu P and Li N 2015 Chin. Opt. Lett. 13 041403
|
[11] |
Xu H, Wang B J, Zhang J G, Han H, Liu L, Wang Y C and Wang A B 2015 Inc. Microwave Opt. Technol. Lett. 57 2502
|
[24] |
Liu M, Zhang M J, Wang A B, Wang L S, Ji Y N and Ma Z 2013 Acta Phys. Sin. 62 064209(in Chinese)
|
[12] |
Gao S L, Zhong S C, Wei K and Ma H 2012 Acta Phys. Sin. 61 180501(in Chinese)
|
[25] |
Pan B W, Lu D, Yu L Q, Zhang L M and Zhao L J 2015 Proc. CLEO 1
|
[13] |
Li Y, Xu K, Yang B J, Yuan Y and Wu N 2008 Acta Phys. Sin. 57 3353(in Chinese)
|
[26] |
Zhu W Q, Wu Z M, Zhong Z Q, Yin X M, Song J, Zhao L J, Lu D and Xia G Q 2015 IEEE Photon. Technol. Lett. 27 2119
|
[14] |
Ma Z, Zhang M J, Liu Y, Bao X Y, Liu H, Zhang Y N and Wang Y C 2015 IEEE Photon. J. 7 6100407
|
[27] |
Wu J G, Zhao L J, Wu Z M, Lu D, Tang X, Zhong Z Q and Xia G Q 2013 Opt. Express 21 23358
|
[15] |
Yi H, Xa L, Xu J, Yu C, Wu Y, Li C and Zhu L 2017 IEEE Photon. J. 9 6803809
|
[28] |
Sunada S, Harayama T, Arai K, Yoshimura K, Davis P, Tsuzuki K and Uchida A 2011 Opt. Express 19 5713
|
[16] |
Zhang M J, Liu H, Zhang J Z, Liu Y and Liu R X 2017 IEEE Photon. J. 9 1600610
|
[29] |
Yin X M, Zhong Z Q, Zhao L J, Lu D, Qiu H Y, Xia G Q and Wu Z M 2015 Opt. Commun. 355 551
|
[17] |
Zhang J Z, Zhang M T, Zhang M J, Liu Y, Feng C K, Wang Y H and Wang Y C 2018 Opt. Lett. 43
|
[30] |
Soriano M C, Garacia-Ojalvo J and Mirasso C R 2013 Rev. Mod. Phys. 85 421
|
[18] |
Ji Y N, Zhang M J, Wang Y C, Wang P, Wang A B, Wu Y, Xu H and Zhang Y N 2014 Int. J. Bifurcation and Chaos 24 1450032
|
[31] |
Bosco A K D, Ohara S, Sato N, Akizawa Y, Uchida A, Harayama T and Inubushi M 2017 IEEE Photon. J. 9 6600512
|
[19] |
Yan S L 2016 Chin. Phys. B 25 090504
|
[32] |
Lang R and Kobayashi K 1980 IEEE J. Quantum Electron. 16 347
|
[20] |
Yan S L 2014 Chin. Phys. B 23 090503
|
[33] |
Toomey J P, Kane D M, Mcmahon C, Argyris A and Syvridis D 2015 Opt. Express 23 18754
|
[21] |
Sciamanna M and Shore K A 2015 Nat. Photon. 9 151
|
[34] |
Olshansky R, Hill P, Lanzisera V and Powazinik W 1987 IEEE J. Quantum Electron 23 1410
|
[22] |
Dou X, Wu C, Chen X, Yin H, Zhao Q, Hao Y and Zhao N 2014 Chin. Opt. Lett. 12 S10610
|
[35] |
Morton P A, Tanbun-Ek T, Logan R A, Sergent A M, Sciortino P F and Coblentz D L 1992 IEEE Photon. Technol. Lett. 4 133
|
[23] |
Yang L, Pan W, Yan L, Luo B, Mu P and Li N 2015 Chin. Opt. Lett. 13 041403
|
[36] |
Bjerkan L, Royset A, Hafskjaer L and Myhre D 1996 J. Lightw. Technol. 14 839
|
[24] |
Liu M, Zhang M J, Wang A B, Wang L S, Ji Y N and Ma Z 2013 Acta Phys. Sin. 62 064209(in Chinese)
|
[37] |
Cartledge J C and Srinivasan R C 1997 J. Lightwave Lightw. Technol. 15 852
|
[25] |
Pan B W, Lu D, Yu L Q, Zhang L M and Zhao L J 2015 Proc. CLEO 1
|
[38] |
Ye J, Li H and McInerney J G 1993 Phys. Rev. A 47 2249
|
[26] |
Zhu W Q, Wu Z M, Zhong Z Q, Yin X M, Song J, Zhao L J, Lu D and Xia G Q 2015 IEEE Photon. Technol. Lett. 27 2119
|
[39] |
Ahmed M, Yamada M and Abdulrhmann S 2009 Int. J. Numer. Model 22 434
|
[27] |
Wu J G, Zhao L J, Wu Z M, Lu D, Tang X, Zhong Z Q and Xia G Q 2013 Opt. Express 21 23358
|
[40] |
Lei Y M and Zhang H X 2017 Chin. Phys. B 26 030502
|
[28] |
Sunada S, Harayama T, Arai K, Yoshimura K, Davis P, Tsuzuki K and Uchida A 2011 Opt. Express 19 5713
|
[41] |
Zhang M J, Xu Y H, Zhao T, Niu Y N, Lv T S, Liu Y, Zhang Z K, Zhang J Z, Wang Y C and Wang A B 2017 IEEE Photon. Technol. Lett. 29 1911
|
[29] |
Yin X M, Zhong Z Q, Zhao L J, Lu D, Qiu H Y, Xia G Q and Wu Z M 2015 Opt. Commun. 355 551
|
[30] |
Soriano M C, Garacia-Ojalvo J and Mirasso C R 2013 Rev. Mod. Phys. 85 421
|
[31] |
Bosco A K D, Ohara S, Sato N, Akizawa Y, Uchida A, Harayama T and Inubushi M 2017 IEEE Photon. J. 9 6600512
|
[32] |
Lang R and Kobayashi K 1980 IEEE J. Quantum Electron. 16 347
|
[33] |
Toomey J P, Kane D M, Mcmahon C, Argyris A and Syvridis D 2015 Opt. Express 23 18754
|
[34] |
Olshansky R, Hill P, Lanzisera V and Powazinik W 1987 IEEE J. Quantum Electron 23 1410
|
[35] |
Morton P A, Tanbun-Ek T, Logan R A, Sergent A M, Sciortino P F and Coblentz D L 1992 IEEE Photon. Technol. Lett. 4 133
|
[36] |
Bjerkan L, Royset A, Hafskjaer L and Myhre D 1996 J. Lightw. Technol. 14 839
|
[37] |
Cartledge J C and Srinivasan R C 1997 J. Lightwave Lightw. Technol. 15 852
|
[38] |
Ye J, Li H and McInerney J G 1993 Phys. Rev. A 47 2249
|
[39] |
Ahmed M, Yamada M and Abdulrhmann S 2009 Int. J. Numer. Model 22 434
|
[40] |
Lei Y M and Zhang H X 2017 Chin. Phys. B 26 030502
|
[41] |
Zhang M J, Xu Y H, Zhao T, Niu Y N, Lv T S, Liu Y, Zhang Z K, Zhang J Z, Wang Y C and Wang A B 2017 IEEE Photon. Technol. Lett. 29 1911
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|