Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(7): 078704    DOI: 10.1088/1674-1056/23/7/078704
Special Issue: TOPICAL REVIEW — Magnetism, magnetic materials, and interdisciplinary research
TOPICAL REVIEW—Magnetism, magnetic materials, and interdisciplinary research Prev   Next  

Formation of multifunctional Fe3O4/Au composite nanoparticles for dual-mode MR/CT imaging applications

Hu Yong (胡勇), Li Jing-Chao (李静超), Shen Ming-Wu (沈明武), Shi Xiang-Yang (史向阳)
College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
Abstract  Recent advances with iron oxide/gold (Fe3O4/Au) composite nanoparticles (CNPs) in dual-modality magnetic resonance (MR) and computed tomography (CT) imaging applications are reviewed. The synthesis and assembly of “dumbbell-like” and “core/shell” Fe3O4/Au CNPs is introduced. Potential applications of some developed Fe3O4/Au CNPs as contrast agents for dual-mode MR/CT imaging applications are described in detail.
Keywords:  iron oxide nanoparticles      gold nanoparticles      magnetic resonance imaging      computed tomography imaging  
Received:  01 May 2014      Revised:  26 May 2014      Accepted manuscript online: 
PACS:  87.57.Q- (Computed tomography)  
  87.61.-c (Magnetic resonance imaging)  
  75.50.-y (Studies of specific magnetic materials)  
  87.85.Rs (Nanotechnologies-applications)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 81351050, 81101150, and 21273032), the Fund of the Science and Technology Commission of Shanghai Municipality, China (Grant Nos. 11nm0506400 and 12520705500), and the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning, China.
Corresponding Authors:  Shen Ming-Wu, Shi Xiang-Yang     E-mail:  mwshen@dhu.edu.cn;xshi@dhu.edu.cn
About author:  87.57.Q-; 87.61.-c; 75.50.-y; 87.85.Rs

Cite this article: 

Hu Yong (胡勇), Li Jing-Chao (李静超), Shen Ming-Wu (沈明武), Shi Xiang-Yang (史向阳) Formation of multifunctional Fe3O4/Au composite nanoparticles for dual-mode MR/CT imaging applications 2014 Chin. Phys. B 23 078704

[1] Kim D, Yu M K, Lee T S, Park J J, Jeong Y Y and Jon S 2011 Nanotechnology 22 155101
[2] Yang H, Zhuang Y M, Sun Y, Dai A T, Shi X Y, Wu D M, Li F Y, Hu H and Yang S P 2011 Biomaterials 32 4584
[3] Hu F Q and Zhao Y S 2012 Nanoscale 4 6235
[4] Hu F Q, Jia Q J, Li Y L and Gao M Y 2011 Nanotechnology 22 245604
[5] Niu D C, Luo X F, Li Y S, Liu X H, Wang X and Shi J L 2013 ACS Appl. Mater. Interfaces 5 9942
[6] Cai H D, Li K G, Shen M W, Wen S H, Luo Y, Peng C, Zhang G X and Shi X Y 2012 J. Mater. Chem. 22 15110
[7] Zhu J, Lu Y J, Li Y G, Jiang J, Cheng L, Liu Z, Guo L, Pan Y and Gu H W 2014 Nanoscale 6 199
[8] Wang L J, Xing H Y, Zhang S J, Ren Q G, Pan L M, Zhang K, Bu W B, Zheng X P, Zhou L P and Peng W J 2013 Biomaterials 34 3390
[9] Arvanitis C D, Livingstone M S and McDannold N 2013 Phys. Med. Biol. 58 4749
[10] Xu B, Dou H, Tao K, Sun K, Ding J, Shi W B, Guo X S, Li J Y, Zhang D and Sun K 2011 Langmuir 27 12134
[11] Patel D, Kell A, Simard B, Xiang B, Lin H Y and Tian G H 2011 Biomaterials 32 1167
[12] Catana C, van der Kouwe A, Benner T, Michel C J, Hamm M, Fenchel M, Fischl B, Rosen B, Schmand M and Sorensen A G 2010 J. Nucl. Med. 51 1431
[13] Schiepers C and Dahlbom M 2011 Eur. Radiol. 21 548
[14] Xing H Y, Bu W B, Zhang S J, Zheng X P, Li M, Chen F, He Q J, Zhou L P, Peng W J and Hua Y Q 2012 Biomaterials 33 1079
[15] Spernyak J A, White Iii W H, Ethirajan M, Patel N J, Goswami L, Chen Y, Turowski S, Missert J R, Batt C and Mazurchuk R 2010 Bioconjugate Chem. 21 828
[16] Niedre M and Ntziachristos V 2008 Proc. IEEE 96 382
[17] Melancon M P, Wang Y T, Wen X X, Bankson J A, Stephens L C, Jasser S, Gelovani J G, Myers J N and Li C 2007 Invest. Radiol. 42 569
[18] Vuu K, Xie J W, McDonald M A, Bernardo M, Hunter F, Zhang Y T, Li K, Bednarski M and Guccione S 2005 Bioconjugate Chem. 16 995
[19] Wu S C, Lin K L, Wang T P, Tzou S C, Singh G, Chen M H, Cheng T L, Chen C Y, Liu G C and Lee T W 2013 Biomaterials 34 4118
[20] Cho H J, Yoon H Y, Koo H, Ko S H, Shim J S, Cho J H, Park J H, Kim K, Kwon I C and Kim D D 2012 J. Control. Release 162 111
[21] Shi X Y, Thomas T P, Myc L A, Kotlyar A and Baker J R 2007 Phys. Chem. Chem. Phys. 9 5712
[22] Wang S H, Shi X Y, Van Antwerp M, Cao Z Y, Swanson S D, Bi X D and Baker J R 2007 Adv. Funct. Mater. 17 3043
[23] Shi X Y, Wang S H, Swanson S D, Ge S, Cao Z Y, Van Antwerp M E, Landmark K J and Baker J R 2008 Adv. Mater. 20 1671
[24] Xu Z C, Hou Y L and Sun S H 2007 J. Am. Chem. Soc. 129 8698
[25] Tian Q W, Hu J Q, Zhu Y H, Zou R J, Chen Z G, Yang S P, Li R W, Su Q Q, Han Y and Liu X G 2013 J. Am. Chem. Soc. 135 8571
[26] Kobayashi Y, Inose H, Nagasu R, Nakagawa T, Kubota Y, Gonda K and Ohuchi N 2013 Mater. Res. Innov. 17 507
[27] Gao L, Fei J B, Zhao J, Li H, Cui Y and Li J B 2012 ACS Nano 6 8030
[28] Peng C, Zheng L F, Chen Q, Shen M W, Guo R, Wang H, Cao X Y, Zhang G X and Shi X Y 2012 Biomaterials 33 1107
[29] Liu H, Wang H, Xu Y H, Shen M W, Zhao J L, Zhang G X and Shi X Y 2014 Nanoscale 6 4521
[30] Hainfeld J F, Smilowitz H M, O'Connor M J, Dilmanian F A and Slatkin D N 2013 Nanomedicine 8 1601
[31] Au J T, Craig G, Longo V, Zanzonico P, Mason M, Fong Y and Allen P J 2013 Am. J. Roentgenol. 200 1347
[32] Kim D, Park S, Lee J H, Jeong Y Y and Jon S 2007 J. Am. Chem. Soc. 129 7661
[33] Popovtzer R, Agrawal A, Kotov N A, Popovtzer A, Balter J, Carey T E and Kopelman R 2008 Nano Lett. 8 4593
[34] Sun I C, Eun D K, Na J H, Lee S, Kim I J, Youn I C, Ko C Y, Kim H S, Lim D and Choi K 2009 Chem. Eur. J. 15 13341
[35] Cui Y L, Wang Y N, Hui W L, Zhang Z F, Xin X F and Chen C 2005 Biomed. Microdevices 7 153
[36] Chen C, Liu Y and Gu H Y 2010 Microchim. Acta 171 371
[37] Wu W, He Q G, Chen H, Tang J X and Nie L B 2007 Nanotechnology 18 145609
[38] Xu C J, Xie J, Ho D, Wang C, Kohler N, Walsh E G, Morgan J R, Chin Y E and Sun S H 2008 Angew. Chem. Int. Ed. 47 173
[39] Xu C J, Wang B D and Sun S H 2009 J. Am. Chem. Soc. 131 4216
[40] Yu H, Chen M, Rice P M, Wang S X, White R L and Sun S H 2005 Nano Lett. 5 379
[41] Choi S H, Na H B, Park Y I, An K, Kwon S G, Jang Y, Park M H, Moon J, Son J S and Song I C 2008 J. Am. Chem. Soc. 130 15573
[42] Kirui D K, Rey D A and Batt C A 2010 Nanotechnology 21 105105
[43] Wood A, Giersig M and Mulvaney P 2001 J. Phys. Chem. B 105 8810
[44] Haruta M 2004 Gold Bull. 37 27
[45] El-Sayed I H, Huang X and El-Sayed M A 2005 Nano Lett. 5 829
[46] Gupta A K, Naregalkar R R, Vaidya V D and Gupta M 2007 Nanomedicine 2 23
[47] Bao J, Chen W, Liu T T, Zhu Y L, Jin P Y, Wang L Y, Liu J F, Wei Y G and Li Y D 2007 ACS Nano 1 293
[48] Caruntu D, Cushing B L, Caruntu G and O'Connor C J 2005 Chem. Mater. 17 3398
[49] Carril M, Fernández I, Rodríguez J, García I and Penadés S 2014 Part. Part. Syst. Charact. 31 81
[50] Hu Y, Meng L, Niu L and Lu Q 2013 ACS Appl. Mater. Interfaces 5 4586
[51] Bhana S, Rai B K, Mishra S R, Wang Y and Huang X 2012 Nanoscale 4 4939
[52] Fan Z, Senapati D, Singh A K and Ray P C 2013 Mol. Pharm. 10 857
[53] Guo R, Wang H, Peng C, Shen M W, Pan M J, Cao X Y, Zhang G X and Shi X Y 2010 J. Phys. Chem. C 114 50
[54] Cai H D, An X, Cui J, Li J C, Wen S H, Li K G, Shen M W, Zheng L F, Zhang G X and Shi X Y 2013 ACS Appl. Mater. Interfaces 5 1722
[55] Lu X Y, Niu M, Qiao R R and Gao M Y 2008 J. Phys. Chem. B 112 14390
[56] Zhang H, Zhong X, Xu J J and Chen H Y 2008 Langmuir 24 13748
[57] Shen M W, Cai H D, Wang X F, Cao X Y, Li K G, Wang S H, Guo R, Zheng L F, Zhang G X and Shi X Y 2012 Nanotechnology 23 105601
[58] Li J C, Zheng L F, Cai H D, Sun W J, Shen M W, Zhang G X and Shi X Y 2013 ACS Appl. Mater. Interfaces 5 10357
[59] Cui Y R, Hong C, Zhou Y L, Li Y, Gao X M and Zhang X X 2011 Talanta 85 1246
[60] Son S J, Reichel J, He B, Schuchman M and Lee S B 2005 J. Am. Chem. Soc. 127 7316
[61] Ma L L, Feldman M D, Tam J M, Paranjape A S, Cheruku K K, Larson T A, Tam J O, Ingram D R, Paramita V and Villard J W 2009 ACS Nano 3 2686
[62] Ren J F, Shen S, Pang Z Q, Lu X H, Deng C H and Jiang X G 2011 Chem. Commun. 47 11692
[63] Lin F H and Doong R A 2011 J. Phys. Chem. C 115 6591
[64] Zhou T, Wu B Y and Xing D 2012 J. Mater. Chem. 22 470
[65] Narayanan S, Sathy B N, Mony U, Koyakutty M, Nair S V and Menon D 2012 ACS Appl. Mater. Interfaces 4 251
[1] Three-dimensional clogging structures of granular spheres near hopper orifice
Jing Yang(杨敬), Dianjinfeng Gong(宫殿锦丰), Xiaoxue Wang(汪晓雪), Zhichao Wang(王志超), Jianqi Li(李建奇), Bingwen Hu(胡炳文), and Chengjie Xia(夏成杰). Chin. Phys. B, 2022, 31(1): 014501.
[2] Sputtered gold nanoparticles enhanced quantum dot light-emitting diodes
Abida Perveen, Xin Zhang(张欣), Jia-Lun Tang(汤加仑), Deng-Bao Han(韩登宝), Shuai Chang(常帅), Luo-Gen Deng(邓罗根), Wen-Yu Ji(纪文宇), Hai-Zheng Zhong(钟海政). Chin. Phys. B, 2018, 27(8): 086101.
[3] Design of small-scale gradient coils in magnetic resonance imaging by using the topology optimization method
Hui Pan(潘辉), Feng Jia(贾峰), Zhen-Yu Liu(刘震宇), Maxim Zaitsev, Juergen Hennig, Jan G Korvink. Chin. Phys. B, 2018, 27(5): 050201.
[4] Performance study of aluminum shielded room for ultra-low-field magnetic resonance imaging based on SQUID: Simulations and experiments
Bo Li(李波), Hui Dong(董慧), Xiao-Lei Huang(黄小磊), Yang Qiu(邱阳), Quan Tao(陶泉), Jian-Ming Zhu(朱建明). Chin. Phys. B, 2018, 27(2): 020701.
[5] Synthesis and microwave absorption properties of graphene-oxide(GO)/polyaniline nanocomposite with gold nanoparticles
Fu Chen (付晨), He Da-Wei (何大伟), WangYong-Sheng (王永生), Fu Ming (富鸣), Geng Xin (耿欣), Zhuo Zu-Liang (卓祖亮). Chin. Phys. B, 2015, 24(8): 087801.
[6] Multifractal analysis of white matter structural changes on 3D magnetic resonance imaging between normal aging and early Alzheimer's disease
Ni Huang-Jing (倪黄晶), Zhou Lu-Ping (周泸萍), Zeng Peng (曾彭), Huang Xiao-Lin (黄晓林), Liu Hong-Xing (刘红星), Ning Xin-Bao (宁新宝), the Alzheimer's Disease Neuroimaging Initiative. Chin. Phys. B, 2015, 24(7): 070502.
[7] Linear-fitting-based similarity coefficient map for tissue dissimilarity analysis in T2*-w magnetic resonance imaging
Yu Shao-De (余绍德), Wu Shi-Bin (伍世宾), Wang Hao-Yu (王浩宇), Wei Xin-Hua (魏新华), Chen Xin (陈鑫), Pan Wan-Long (潘万龙), Hu Jiani, Xie Yao-Qin (谢耀钦). Chin. Phys. B, 2015, 24(12): 128711.
[8] Novel magnetic vortex nanorings/nanodiscs: Synthesis and theranostic applications
Liu Xiao-Li (刘晓丽), Yang Yong (杨勇), Wu Jian-Peng (吴建鹏), Zhang Yi-Fan (张艺凡), Fan Hai-Ming (樊海明), Ding Jun (丁军). Chin. Phys. B, 2015, 24(12): 127505.
[9] Self-assembled superparamagnetic nanoparticles as MRI contrast agents–A review
Su Hong-Ying (苏红莹), Wu Chang-Qiang (吴昌强), Li Dan-Yang (李丹阳), Ai Hua (艾华). Chin. Phys. B, 2015, 24(12): 127506.
[10] Flexible reduced field of view magnetic resonance imaging based on single-shot spatiotemporally encoded technique
Li Jing (李敬), Cai Cong-Bo (蔡聪波), Chen Lin (陈林), Chen Ying (陈颖), Qu Xiao-Bo (屈小波), Cai Shu-Hui (蔡淑惠). Chin. Phys. B, 2015, 24(10): 108703.
[11] Surface modification of magnetic nanoparticles in biomedicine
Chu Xin (储鑫), Yu Jing (余靓), Hou Yang-Long (侯仰龙). Chin. Phys. B, 2015, 24(1): 014704.
[12] Nanomagnetism:Principles, nanostructures, and biomedical applications
Yang Ce (杨策), Hou Yang-Long (侯仰龙), Gao Song (高松). Chin. Phys. B, 2014, 23(5): 057505.
[13] Parallel variable-density spiral imaging using nonlocal total variation reconstruction
Fang Sheng (方晟), Guo Hua (郭华). Chin. Phys. B, 2014, 23(5): 057401.
[14] Multifunctional magnetic nanoparticles for magnetic resonance image-guided photothermal therapy for cancer
Yue Xiu-Li (岳秀丽), Ma Fang (马放), Dai Zhi-Fei (戴志飞). Chin. Phys. B, 2014, 23(4): 044301.
[15] Multi-objective optimization of gradient coil for benchtop magnetic resonance imaging system with high-resolution
Wang Long-Qing (王龙庆), Wang Wei-Min (王为民). Chin. Phys. B, 2014, 23(2): 028703.
No Suggested Reading articles found!