Special Issue:
TOPICAL REVIEW — Magnetism, magnetic materials, and interdisciplinary research
|
TOPICAL REVIEW—Magnetism, magnetic materials, and interdisciplinary research |
Prev
Next
|
|
|
Formation of multifunctional Fe3O4/Au composite nanoparticles for dual-mode MR/CT imaging applications |
Hu Yong (胡勇), Li Jing-Chao (李静超), Shen Ming-Wu (沈明武), Shi Xiang-Yang (史向阳) |
College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China |
|
|
Abstract Recent advances with iron oxide/gold (Fe3O4/Au) composite nanoparticles (CNPs) in dual-modality magnetic resonance (MR) and computed tomography (CT) imaging applications are reviewed. The synthesis and assembly of “dumbbell-like” and “core/shell” Fe3O4/Au CNPs is introduced. Potential applications of some developed Fe3O4/Au CNPs as contrast agents for dual-mode MR/CT imaging applications are described in detail.
|
Received: 01 May 2014
Revised: 26 May 2014
Accepted manuscript online:
|
PACS:
|
87.57.Q-
|
(Computed tomography)
|
|
87.61.-c
|
(Magnetic resonance imaging)
|
|
75.50.-y
|
(Studies of specific magnetic materials)
|
|
87.85.Rs
|
(Nanotechnologies-applications)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 81351050, 81101150, and 21273032), the Fund of the Science and Technology Commission of Shanghai Municipality, China (Grant Nos. 11nm0506400 and 12520705500), and the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning, China. |
Corresponding Authors:
Shen Ming-Wu, Shi Xiang-Yang
E-mail: mwshen@dhu.edu.cn;xshi@dhu.edu.cn
|
About author: 87.57.Q-; 87.61.-c; 75.50.-y; 87.85.Rs |
Cite this article:
Hu Yong (胡勇), Li Jing-Chao (李静超), Shen Ming-Wu (沈明武), Shi Xiang-Yang (史向阳) Formation of multifunctional Fe3O4/Au composite nanoparticles for dual-mode MR/CT imaging applications 2014 Chin. Phys. B 23 078704
|
[1] |
Kim D, Yu M K, Lee T S, Park J J, Jeong Y Y and Jon S 2011 Nanotechnology 22 155101
|
[2] |
Yang H, Zhuang Y M, Sun Y, Dai A T, Shi X Y, Wu D M, Li F Y, Hu H and Yang S P 2011 Biomaterials 32 4584
|
[3] |
Hu F Q and Zhao Y S 2012 Nanoscale 4 6235
|
[4] |
Hu F Q, Jia Q J, Li Y L and Gao M Y 2011 Nanotechnology 22 245604
|
[5] |
Niu D C, Luo X F, Li Y S, Liu X H, Wang X and Shi J L 2013 ACS Appl. Mater. Interfaces 5 9942
|
[6] |
Cai H D, Li K G, Shen M W, Wen S H, Luo Y, Peng C, Zhang G X and Shi X Y 2012 J. Mater. Chem. 22 15110
|
[7] |
Zhu J, Lu Y J, Li Y G, Jiang J, Cheng L, Liu Z, Guo L, Pan Y and Gu H W 2014 Nanoscale 6 199
|
[8] |
Wang L J, Xing H Y, Zhang S J, Ren Q G, Pan L M, Zhang K, Bu W B, Zheng X P, Zhou L P and Peng W J 2013 Biomaterials 34 3390
|
[9] |
Arvanitis C D, Livingstone M S and McDannold N 2013 Phys. Med. Biol. 58 4749
|
[10] |
Xu B, Dou H, Tao K, Sun K, Ding J, Shi W B, Guo X S, Li J Y, Zhang D and Sun K 2011 Langmuir 27 12134
|
[11] |
Patel D, Kell A, Simard B, Xiang B, Lin H Y and Tian G H 2011 Biomaterials 32 1167
|
[12] |
Catana C, van der Kouwe A, Benner T, Michel C J, Hamm M, Fenchel M, Fischl B, Rosen B, Schmand M and Sorensen A G 2010 J. Nucl. Med. 51 1431
|
[13] |
Schiepers C and Dahlbom M 2011 Eur. Radiol. 21 548
|
[14] |
Xing H Y, Bu W B, Zhang S J, Zheng X P, Li M, Chen F, He Q J, Zhou L P, Peng W J and Hua Y Q 2012 Biomaterials 33 1079
|
[15] |
Spernyak J A, White Iii W H, Ethirajan M, Patel N J, Goswami L, Chen Y, Turowski S, Missert J R, Batt C and Mazurchuk R 2010 Bioconjugate Chem. 21 828
|
[16] |
Niedre M and Ntziachristos V 2008 Proc. IEEE 96 382
|
[17] |
Melancon M P, Wang Y T, Wen X X, Bankson J A, Stephens L C, Jasser S, Gelovani J G, Myers J N and Li C 2007 Invest. Radiol. 42 569
|
[18] |
Vuu K, Xie J W, McDonald M A, Bernardo M, Hunter F, Zhang Y T, Li K, Bednarski M and Guccione S 2005 Bioconjugate Chem. 16 995
|
[19] |
Wu S C, Lin K L, Wang T P, Tzou S C, Singh G, Chen M H, Cheng T L, Chen C Y, Liu G C and Lee T W 2013 Biomaterials 34 4118
|
[20] |
Cho H J, Yoon H Y, Koo H, Ko S H, Shim J S, Cho J H, Park J H, Kim K, Kwon I C and Kim D D 2012 J. Control. Release 162 111
|
[21] |
Shi X Y, Thomas T P, Myc L A, Kotlyar A and Baker J R 2007 Phys. Chem. Chem. Phys. 9 5712
|
[22] |
Wang S H, Shi X Y, Van Antwerp M, Cao Z Y, Swanson S D, Bi X D and Baker J R 2007 Adv. Funct. Mater. 17 3043
|
[23] |
Shi X Y, Wang S H, Swanson S D, Ge S, Cao Z Y, Van Antwerp M E, Landmark K J and Baker J R 2008 Adv. Mater. 20 1671
|
[24] |
Xu Z C, Hou Y L and Sun S H 2007 J. Am. Chem. Soc. 129 8698
|
[25] |
Tian Q W, Hu J Q, Zhu Y H, Zou R J, Chen Z G, Yang S P, Li R W, Su Q Q, Han Y and Liu X G 2013 J. Am. Chem. Soc. 135 8571
|
[26] |
Kobayashi Y, Inose H, Nagasu R, Nakagawa T, Kubota Y, Gonda K and Ohuchi N 2013 Mater. Res. Innov. 17 507
|
[27] |
Gao L, Fei J B, Zhao J, Li H, Cui Y and Li J B 2012 ACS Nano 6 8030
|
[28] |
Peng C, Zheng L F, Chen Q, Shen M W, Guo R, Wang H, Cao X Y, Zhang G X and Shi X Y 2012 Biomaterials 33 1107
|
[29] |
Liu H, Wang H, Xu Y H, Shen M W, Zhao J L, Zhang G X and Shi X Y 2014 Nanoscale 6 4521
|
[30] |
Hainfeld J F, Smilowitz H M, O'Connor M J, Dilmanian F A and Slatkin D N 2013 Nanomedicine 8 1601
|
[31] |
Au J T, Craig G, Longo V, Zanzonico P, Mason M, Fong Y and Allen P J 2013 Am. J. Roentgenol. 200 1347
|
[32] |
Kim D, Park S, Lee J H, Jeong Y Y and Jon S 2007 J. Am. Chem. Soc. 129 7661
|
[33] |
Popovtzer R, Agrawal A, Kotov N A, Popovtzer A, Balter J, Carey T E and Kopelman R 2008 Nano Lett. 8 4593
|
[34] |
Sun I C, Eun D K, Na J H, Lee S, Kim I J, Youn I C, Ko C Y, Kim H S, Lim D and Choi K 2009 Chem. Eur. J. 15 13341
|
[35] |
Cui Y L, Wang Y N, Hui W L, Zhang Z F, Xin X F and Chen C 2005 Biomed. Microdevices 7 153
|
[36] |
Chen C, Liu Y and Gu H Y 2010 Microchim. Acta 171 371
|
[37] |
Wu W, He Q G, Chen H, Tang J X and Nie L B 2007 Nanotechnology 18 145609
|
[38] |
Xu C J, Xie J, Ho D, Wang C, Kohler N, Walsh E G, Morgan J R, Chin Y E and Sun S H 2008 Angew. Chem. Int. Ed. 47 173
|
[39] |
Xu C J, Wang B D and Sun S H 2009 J. Am. Chem. Soc. 131 4216
|
[40] |
Yu H, Chen M, Rice P M, Wang S X, White R L and Sun S H 2005 Nano Lett. 5 379
|
[41] |
Choi S H, Na H B, Park Y I, An K, Kwon S G, Jang Y, Park M H, Moon J, Son J S and Song I C 2008 J. Am. Chem. Soc. 130 15573
|
[42] |
Kirui D K, Rey D A and Batt C A 2010 Nanotechnology 21 105105
|
[43] |
Wood A, Giersig M and Mulvaney P 2001 J. Phys. Chem. B 105 8810
|
[44] |
Haruta M 2004 Gold Bull. 37 27
|
[45] |
El-Sayed I H, Huang X and El-Sayed M A 2005 Nano Lett. 5 829
|
[46] |
Gupta A K, Naregalkar R R, Vaidya V D and Gupta M 2007 Nanomedicine 2 23
|
[47] |
Bao J, Chen W, Liu T T, Zhu Y L, Jin P Y, Wang L Y, Liu J F, Wei Y G and Li Y D 2007 ACS Nano 1 293
|
[48] |
Caruntu D, Cushing B L, Caruntu G and O'Connor C J 2005 Chem. Mater. 17 3398
|
[49] |
Carril M, Fernández I, Rodríguez J, García I and Penadés S 2014 Part. Part. Syst. Charact. 31 81
|
[50] |
Hu Y, Meng L, Niu L and Lu Q 2013 ACS Appl. Mater. Interfaces 5 4586
|
[51] |
Bhana S, Rai B K, Mishra S R, Wang Y and Huang X 2012 Nanoscale 4 4939
|
[52] |
Fan Z, Senapati D, Singh A K and Ray P C 2013 Mol. Pharm. 10 857
|
[53] |
Guo R, Wang H, Peng C, Shen M W, Pan M J, Cao X Y, Zhang G X and Shi X Y 2010 J. Phys. Chem. C 114 50
|
[54] |
Cai H D, An X, Cui J, Li J C, Wen S H, Li K G, Shen M W, Zheng L F, Zhang G X and Shi X Y 2013 ACS Appl. Mater. Interfaces 5 1722
|
[55] |
Lu X Y, Niu M, Qiao R R and Gao M Y 2008 J. Phys. Chem. B 112 14390
|
[56] |
Zhang H, Zhong X, Xu J J and Chen H Y 2008 Langmuir 24 13748
|
[57] |
Shen M W, Cai H D, Wang X F, Cao X Y, Li K G, Wang S H, Guo R, Zheng L F, Zhang G X and Shi X Y 2012 Nanotechnology 23 105601
|
[58] |
Li J C, Zheng L F, Cai H D, Sun W J, Shen M W, Zhang G X and Shi X Y 2013 ACS Appl. Mater. Interfaces 5 10357
|
[59] |
Cui Y R, Hong C, Zhou Y L, Li Y, Gao X M and Zhang X X 2011 Talanta 85 1246
|
[60] |
Son S J, Reichel J, He B, Schuchman M and Lee S B 2005 J. Am. Chem. Soc. 127 7316
|
[61] |
Ma L L, Feldman M D, Tam J M, Paranjape A S, Cheruku K K, Larson T A, Tam J O, Ingram D R, Paramita V and Villard J W 2009 ACS Nano 3 2686
|
[62] |
Ren J F, Shen S, Pang Z Q, Lu X H, Deng C H and Jiang X G 2011 Chem. Commun. 47 11692
|
[63] |
Lin F H and Doong R A 2011 J. Phys. Chem. C 115 6591
|
[64] |
Zhou T, Wu B Y and Xing D 2012 J. Mater. Chem. 22 470
|
[65] |
Narayanan S, Sathy B N, Mony U, Koyakutty M, Nair S V and Menon D 2012 ACS Appl. Mater. Interfaces 4 251
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|