INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
A computational study of the chemokine receptor CXCR1 bound with interleukin-8 |
Yang Wang(王洋)1, Cecylia Severin Lupala1, Ting Wang(王亭)2, Xuanxuan Li(李选选)1,3, Ji-Hye Yun4, Jae-hyun Park4, Zeyu Jin(金泽宇)4, Weontae Lee4, Leihan Tan(汤雷翰)1,5, Haiguang Liu(刘海广)1 |
1 Complex Systems Division, Beijing Computational Science Research Center, Beijing 100193, China; 2 Genome Center, University of California, Davis, 451 East Health Science Drive, Davis, CA, 95616, USA; 3 Department of Engineering physics, Tsinghua University, Beijing 100086, China; 4 Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul 03722, South Korea; 5 Department of Physics and Institute of Computational and Theoretical Studies, Hong Kong Baptist University, Hong Kong, China |
|
|
Abstract CXCR1 is a G-protein coupled receptor, transducing signals from chemokines, in particular the interleukin-8 (IL8) molecules. This study combines homology modeling and molecular dynamics simulation methods to study the structure of CXCR1-IL8 complex. By using CXCR4-vMIP-Ⅱ crystallography structure as the homologous template, CXCR1-IL8 complex structure was constructed, and then refined using all-atom molecular dynamics simulations. Through extensive simulations, CXCR1-IL8 binding poses were investigated in detail. Furthermore, the role of the N-terminal of CXCR1 receptor was studied by comparing four complex models differing in the N-terminal sequences. The results indicate that the receptor N-terminal affects the binding of IL8 significantly. With a shorter N-terminal domain, the binding of IL8 to CXCR1 becomes unstable. The homology modeling and simulations also reveal the key receptor-ligand residues involved in the electrostatic interactions known to be vital for complex formation.
|
Received: 24 October 2017
Revised: 07 December 2017
Accepted manuscript online:
|
PACS:
|
87.15.K-
|
(Molecular interactions; membrane-protein interactions)
|
|
31.15.at
|
(Molecule transport characteristics; molecular dynamics; electronic structure of polymers)
|
|
82.20.Wt
|
(Computational modeling; simulation)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11575021, U1530401, and U1430237) and the National Research Foundation of Korea (Grant Nos. NRF-2017R1A2B2008483 and NRF-2016R1A6A3A04010213). |
Corresponding Authors:
Haiguang Liu
E-mail: hgliu@csrc.ac.cn
|
Cite this article:
Yang Wang(王洋), Cecylia Severin Lupala, Ting Wang(王亭), Xuanxuan Li(李选选), Ji-Hye Yun, Jae-hyun Park, Zeyu Jin(金泽宇), Weontae Lee, Leihan Tan(汤雷翰), Haiguang Liu(刘海广) A computational study of the chemokine receptor CXCR1 bound with interleukin-8 2018 Chin. Phys. B 27 038702
|
[1] |
Bonecchi R, Galliera E, Borroni E M, Corsi M M, Locati M and Mantovani A 2009 Front. Biosci. Landmark Ed. 14 540
|
[2] |
Zlotnik A and Yoshie O 2012 Immunity 36 705
|
[3] |
Griffith J W, Sokol C L and Luster A D 2014 Annu. Rev. Immunol. 32 659
|
[4] |
Salanga C L and Handel T M 2011 Exp. Cell Res. 317 590
|
[5] |
Baggiolini M, Dewald B and Moser B 1993 Adv. Immunol. 55 97
|
[6] |
Stillie R, Farooq S M, Gordon J R and Stadnyk A W 2009 J. Leukoc. Biol. 86 529
|
[7] |
O'Hayre M, Salanga C L, Handel T M and Allen S J 2008 Biochem. J. 409 635
|
[8] |
Clore G M, Gronenborn A M, Appella E, Yamada M and Matsushima K 1990 Biochemistry 29 1689
|
[9] |
Baldwin E T, Weber I T, St Charles R, Xuan J C, Appella E, Yamada M, Matsushima K, Edwards B F, Clore G M, Gronenborn A M, Rajarathnam K, Clark-Lewis I and Sykes B D 1995 Biochemistry 34 12983
|
[10] |
Rajarathnam K, Clark-Lewis I and Sykes B D 1995 Biochemistry 34 12983
|
[11] |
Burrows S D, Doyle M L, Murphy K P, Franklin S G, White J R, Brooks I, McNulty D E, Scott M O, Knutson J R, Porter D, Young P R and Hensley P 1994 Biochemistry 33 12741
|
[12] |
Joseph P R B and Rajarathnam K 2015 Protein Sci. 24 81
|
[13] |
Nasser M W, Raghuwanshi S K, Grant D J, Jala V R, Rajarathnam K and Richardson R M 2009 J. Immunol. 183 3425
|
[14] |
Joseph P R B, Sarmiento J M, Mishra A K, Das S T, Garofalo R P, Navarro J and Rajarathnam K 2010 J. Biol. Chem. 285 29262
|
[15] |
Rajagopalan L and Rajarathnam K 2004 J. Biol. Chem. 279 30000
|
[16] |
LaRosa G J, Thomas K M, Kaufmann M E, Mark R, White M, Taylor L, Gray G, Witt D and Navarro J 1992 J. Biol. Chem. 267 25402
|
[17] |
Gayle R B, Sleath P R, Srinivason S, Birks C W, Weerawarna K S, Cerretti D P, Kozlosky C J, Nelson N, Bos T Vanden and Beckmann M P 1993 J. Biol. Chem. 268 7283
|
[18] |
Szpakowska M, Fievez V, Arumugan K, Van Nuland N, Schmit J C and Chevigné A 2012 Biochem. Pharmacol. 84 1366
|
[19] |
Clubb R T, Omichinski J G, Clore G M and Gronenborn A M 1994 FEBS Lett. 338 93
|
[20] |
Barter E F and Stone M J 2012 Biochemistry 51 1322
|
[21] |
Park S H, Casagrande F, Cho L, Albrecht L and Opella S J 2011 J. Mol. Biol. 414 194
|
[22] |
Kendrick A A, Holliday M J, Isern N G, Zhang F, Camilloni C, Huynh C, Vendruscolo M, Armstrong G and Eisenmesser E Z 2014 Protein Sci. 23 464
|
[23] |
Girrbach M, Meliciani I, Berthold S, Oster A, Brurein F, Strunk T, Wadhwani P, Berensmeier S, Wenzel W and Schmitz K 2014 Phys. Chem. Chem. Phys. 16 8036
|
[24] |
Skelton N J, Quan C, Reilly D and Lowman H 1999 Structure 7 157
|
[25] |
Fernando H, Nagle G T and Rajarathnam K 2007 FEBS J. 274 241
|
[26] |
Hebert C A, Chuntharapai A, Smith M, Colby T, Kim J and Horuk R 1993 J. Biol. Chem. 268 18549
|
[27] |
Leong S R, Kabakoff R C and Hebert C A 1994 J. Biol. Chem. 269 19343
|
[28] |
Park S H, Das B B, Casagrande F, Tian Y, Nothnagel H J, Chu M, Kiefer H, Maier K, De Angelis A A, Marassi F M and Opella S J 2012 Nature 491 7426
|
[29] |
Liou J W, Chang F T, Chung Y, Chen W Y, Fischer W B and Hsu H J 2014 PLoS One 94 e94178
|
[30] |
Qin L, Kufareva I, Holden L G, Wang C, Zheng Y, Zhao C, Fenalti G, Wu H, Han G W, Cherezov V, Abagyan R, Stevens R C, Handel T M and Zhang Y 2015 Science 347 1117-22
|
[31] |
Zhang Y 2008 Bioinformatics 9 40
|
[32] |
Isberg V, Mordalski S, Munk C, Rataj K, Harpsoe K, Hauser A S, Vroling B, Bojarski A J, Vriend G and Gloriam D E 2016 Nucleic Acids Res. 44 D356
|
[33] |
Lomize M A, Pogozheva I D, Joo H, Mosberg H I and Lomize A L 2012 Nucleic Acids Res. 40
|
[34] |
Jo S, Lim J B, Klauda J B and Im W 2009 Biophys. J. 97 50
|
[35] |
Lee J, Cheng X, Swails J M, Yeom M S, Eastman P K, Lemkul J A, Wei S, Buckner J, Jeong J C, Qi Y, Jo S, Pande V S, Case D A, Brooks C L, MacKerell A D, Klauda J B and Im W 2016 J. Chem. Theory Comput. 12 405
|
[36] |
Hess B, Kutzner C, Van Der Spoel D and Lindahl E 2008 J. Chem. Theory Comput. 4 435
|
[37] |
Word J M, Lovell S C, Richardson J S and Richardson D C 1999 J. Mol. Biol. 285 1735
|
[38] |
Case D A, Cheatham T E, Darden T, Gohlke H, Luo R, Merz K M, Onufriev A, Simmerling C, Wang B and Woods R J 2005 J. Comput. Chem. 26 1668
|
[39] |
Roe D R and Cheatham T E 2013 J. Chem. Theory Comput. 9 3084
|
[40] |
Baker D and Sali A 2001 Science 294 93
|
[41] |
Kc D B 2016 Brief. Bioinform. 31 1
|
[42] |
Cacalano G, Lee J, Kikly K, Ryan A M, Pitts-Meek S, Hultgren B, Wood W I and Moore M W 1994 Science 265 682
|
[43] |
Pu M, Xu Z, Peng Y, Hou Y, Liu D, Wang Y, Liu H, Song G and Liu Z 2017 Protein & Cell 10 1007
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|