Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(3): 038702    DOI: 10.1088/1674-1056/27/3/038702
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

A computational study of the chemokine receptor CXCR1 bound with interleukin-8

Yang Wang(王洋)1, Cecylia Severin Lupala1, Ting Wang(王亭)2, Xuanxuan Li(李选选)1,3, Ji-Hye Yun4, Jae-hyun Park4, Zeyu Jin(金泽宇)4, Weontae Lee4, Leihan Tan(汤雷翰)1,5, Haiguang Liu(刘海广)1
1 Complex Systems Division, Beijing Computational Science Research Center, Beijing 100193, China;
2 Genome Center, University of California, Davis, 451 East Health Science Drive, Davis, CA, 95616, USA;
3 Department of Engineering physics, Tsinghua University, Beijing 100086, China;
4 Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul 03722, South Korea;
5 Department of Physics and Institute of Computational and Theoretical Studies, Hong Kong Baptist University, Hong Kong, China
Abstract  CXCR1 is a G-protein coupled receptor, transducing signals from chemokines, in particular the interleukin-8 (IL8) molecules. This study combines homology modeling and molecular dynamics simulation methods to study the structure of CXCR1-IL8 complex. By using CXCR4-vMIP-Ⅱ crystallography structure as the homologous template, CXCR1-IL8 complex structure was constructed, and then refined using all-atom molecular dynamics simulations. Through extensive simulations, CXCR1-IL8 binding poses were investigated in detail. Furthermore, the role of the N-terminal of CXCR1 receptor was studied by comparing four complex models differing in the N-terminal sequences. The results indicate that the receptor N-terminal affects the binding of IL8 significantly. With a shorter N-terminal domain, the binding of IL8 to CXCR1 becomes unstable. The homology modeling and simulations also reveal the key receptor-ligand residues involved in the electrostatic interactions known to be vital for complex formation.
Keywords:  CXCR1-IL8 complex      homology modeling      ligand binding      molecular dynamics  
Received:  24 October 2017      Revised:  07 December 2017      Accepted manuscript online: 
PACS:  87.15.K- (Molecular interactions; membrane-protein interactions)  
  31.15.at (Molecule transport characteristics; molecular dynamics; electronic structure of polymers)  
  82.20.Wt (Computational modeling; simulation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11575021, U1530401, and U1430237) and the National Research Foundation of Korea (Grant Nos. NRF-2017R1A2B2008483 and NRF-2016R1A6A3A04010213).
Corresponding Authors:  Haiguang Liu     E-mail:  hgliu@csrc.ac.cn

Cite this article: 

Yang Wang(王洋), Cecylia Severin Lupala, Ting Wang(王亭), Xuanxuan Li(李选选), Ji-Hye Yun, Jae-hyun Park, Zeyu Jin(金泽宇), Weontae Lee, Leihan Tan(汤雷翰), Haiguang Liu(刘海广) A computational study of the chemokine receptor CXCR1 bound with interleukin-8 2018 Chin. Phys. B 27 038702

[1] Bonecchi R, Galliera E, Borroni E M, Corsi M M, Locati M and Mantovani A 2009 Front. Biosci. Landmark Ed. 14 540
[2] Zlotnik A and Yoshie O 2012 Immunity 36 705
[3] Griffith J W, Sokol C L and Luster A D 2014 Annu. Rev. Immunol. 32 659
[4] Salanga C L and Handel T M 2011 Exp. Cell Res. 317 590
[5] Baggiolini M, Dewald B and Moser B 1993 Adv. Immunol. 55 97
[6] Stillie R, Farooq S M, Gordon J R and Stadnyk A W 2009 J. Leukoc. Biol. 86 529
[7] O'Hayre M, Salanga C L, Handel T M and Allen S J 2008 Biochem. J. 409 635
[8] Clore G M, Gronenborn A M, Appella E, Yamada M and Matsushima K 1990 Biochemistry 29 1689
[9] Baldwin E T, Weber I T, St Charles R, Xuan J C, Appella E, Yamada M, Matsushima K, Edwards B F, Clore G M, Gronenborn A M, Rajarathnam K, Clark-Lewis I and Sykes B D 1995 Biochemistry 34 12983
[10] Rajarathnam K, Clark-Lewis I and Sykes B D 1995 Biochemistry 34 12983
[11] Burrows S D, Doyle M L, Murphy K P, Franklin S G, White J R, Brooks I, McNulty D E, Scott M O, Knutson J R, Porter D, Young P R and Hensley P 1994 Biochemistry 33 12741
[12] Joseph P R B and Rajarathnam K 2015 Protein Sci. 24 81
[13] Nasser M W, Raghuwanshi S K, Grant D J, Jala V R, Rajarathnam K and Richardson R M 2009 J. Immunol. 183 3425
[14] Joseph P R B, Sarmiento J M, Mishra A K, Das S T, Garofalo R P, Navarro J and Rajarathnam K 2010 J. Biol. Chem. 285 29262
[15] Rajagopalan L and Rajarathnam K 2004 J. Biol. Chem. 279 30000
[16] LaRosa G J, Thomas K M, Kaufmann M E, Mark R, White M, Taylor L, Gray G, Witt D and Navarro J 1992 J. Biol. Chem. 267 25402
[17] Gayle R B, Sleath P R, Srinivason S, Birks C W, Weerawarna K S, Cerretti D P, Kozlosky C J, Nelson N, Bos T Vanden and Beckmann M P 1993 J. Biol. Chem. 268 7283
[18] Szpakowska M, Fievez V, Arumugan K, Van Nuland N, Schmit J C and Chevigné A 2012 Biochem. Pharmacol. 84 1366
[19] Clubb R T, Omichinski J G, Clore G M and Gronenborn A M 1994 FEBS Lett. 338 93
[20] Barter E F and Stone M J 2012 Biochemistry 51 1322
[21] Park S H, Casagrande F, Cho L, Albrecht L and Opella S J 2011 J. Mol. Biol. 414 194
[22] Kendrick A A, Holliday M J, Isern N G, Zhang F, Camilloni C, Huynh C, Vendruscolo M, Armstrong G and Eisenmesser E Z 2014 Protein Sci. 23 464
[23] Girrbach M, Meliciani I, Berthold S, Oster A, Brurein F, Strunk T, Wadhwani P, Berensmeier S, Wenzel W and Schmitz K 2014 Phys. Chem. Chem. Phys. 16 8036
[24] Skelton N J, Quan C, Reilly D and Lowman H 1999 Structure 7 157
[25] Fernando H, Nagle G T and Rajarathnam K 2007 FEBS J. 274 241
[26] Hebert C A, Chuntharapai A, Smith M, Colby T, Kim J and Horuk R 1993 J. Biol. Chem. 268 18549
[27] Leong S R, Kabakoff R C and Hebert C A 1994 J. Biol. Chem. 269 19343
[28] Park S H, Das B B, Casagrande F, Tian Y, Nothnagel H J, Chu M, Kiefer H, Maier K, De Angelis A A, Marassi F M and Opella S J 2012 Nature 491 7426
[29] Liou J W, Chang F T, Chung Y, Chen W Y, Fischer W B and Hsu H J 2014 PLoS One 94 e94178
[30] Qin L, Kufareva I, Holden L G, Wang C, Zheng Y, Zhao C, Fenalti G, Wu H, Han G W, Cherezov V, Abagyan R, Stevens R C, Handel T M and Zhang Y 2015 Science 347 1117-22
[31] Zhang Y 2008 Bioinformatics 9 40
[32] Isberg V, Mordalski S, Munk C, Rataj K, Harpsoe K, Hauser A S, Vroling B, Bojarski A J, Vriend G and Gloriam D E 2016 Nucleic Acids Res. 44 D356
[33] Lomize M A, Pogozheva I D, Joo H, Mosberg H I and Lomize A L 2012 Nucleic Acids Res. 40
[34] Jo S, Lim J B, Klauda J B and Im W 2009 Biophys. J. 97 50
[35] Lee J, Cheng X, Swails J M, Yeom M S, Eastman P K, Lemkul J A, Wei S, Buckner J, Jeong J C, Qi Y, Jo S, Pande V S, Case D A, Brooks C L, MacKerell A D, Klauda J B and Im W 2016 J. Chem. Theory Comput. 12 405
[36] Hess B, Kutzner C, Van Der Spoel D and Lindahl E 2008 J. Chem. Theory Comput. 4 435
[37] Word J M, Lovell S C, Richardson J S and Richardson D C 1999 J. Mol. Biol. 285 1735
[38] Case D A, Cheatham T E, Darden T, Gohlke H, Luo R, Merz K M, Onufriev A, Simmerling C, Wang B and Woods R J 2005 J. Comput. Chem. 26 1668
[39] Roe D R and Cheatham T E 2013 J. Chem. Theory Comput. 9 3084
[40] Baker D and Sali A 2001 Science 294 93
[41] Kc D B 2016 Brief. Bioinform. 31 1
[42] Cacalano G, Lee J, Kikly K, Ryan A M, Pitts-Meek S, Hultgren B, Wood W I and Moore M W 1994 Science 265 682
[43] Pu M, Xu Z, Peng Y, Hou Y, Liu D, Wang Y, Liu H, Song G and Liu Z 2017 Protein & Cell 10 1007
[1] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[2] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[3] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[4] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[5] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[6] Spatial correlation of irreversible displacement in oscillatory-sheared metallic glasses
Shiheng Cui(崔世恒), Huashan Liu(刘华山), and Hailong Peng(彭海龙). Chin. Phys. B, 2022, 31(8): 086108.
[7] Effect of void size and Mg contents on plastic deformation behaviors of Al-Mg alloy with pre-existing void: Molecular dynamics study
Ning Wei(魏宁), Ai-Qiang Shi(史爱强), Zhi-Hui Li(李志辉), Bing-Xian Ou(区炳显), Si-Han Zhao(赵思涵), and Jun-Hua Zhao(赵军华). Chin. Phys. B, 2022, 31(6): 066203.
[8] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[9] Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations
Jian-Gang Wang(王建港), Xiao-Xuan Shi(史晓璇), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业),Hong Chen(陈洪), and Ping Xie(谢平). Chin. Phys. B, 2022, 31(5): 058702.
[10] Impact of thermostat on interfacial thermal conductance prediction from non-equilibrium molecular dynamics simulations
Song Hu(胡松), C Y Zhao(赵长颖), and Xiaokun Gu(顾骁坤). Chin. Phys. B, 2022, 31(5): 056301.
[11] Evaluation on performance of MM/PBSA in nucleic acid-protein systems
Yuan-Qiang Chen(陈远强), Yan-Jing Sheng(盛艳静), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强). Chin. Phys. B, 2022, 31(4): 048701.
[12] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[13] Evolution of defects and deformation mechanisms in different tensile directions of solidified lamellar Ti-Al alloy
Yutao Liu(刘玉涛), Tinghong Gao(高廷红), Yue Gao(高越), Lianxin Li(李连欣), Min Tan(谭敏), Quan Xie(谢泉), Qian Chen(陈茜), Zean Tian(田泽安), Yongchao Liang(梁永超), and Bei Wang(王蓓). Chin. Phys. B, 2022, 31(4): 046105.
[14] Effect of the number of defect particles on the structure and dispersion relation of a two-dimensional dust lattice system
Rangyue Zhang(张壤月), Guannan Shi(史冠男), Hanyu Tang(唐瀚宇), Yang Liu(刘阳), Yanhong Liu(刘艳红), and Feng Huang(黄峰). Chin. Phys. B, 2022, 31(3): 035204.
[15] Molecular dynamics simulations on the wet/dry self-latching and electric fields triggered wet/dry transitions between nanosheets: A non-volatile memory nanostructure
Jianzhuo Zhu(朱键卓), Xinyu Zhang(张鑫宇), Xingyuan Li(李兴元), and Qiuming Peng(彭秋明). Chin. Phys. B, 2022, 31(2): 024703.
No Suggested Reading articles found!