Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(2): 023103    DOI: 10.1088/1674-1056/27/2/023103
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Excited state intramolecular proton transfer mechanism of o-hydroxynaphthyl phenanthroimidazole

Shuang Liu(刘爽)1, Yan-Zhen Ma(马艳珍)2, Yun-Fan Yang(杨云帆)2, Song-Song Liu(刘松松)1, Yong-Qing Li(李永庆)2, Yu-Zhi Song(宋玉志)1
1. School of Physics and Electronics, Shandong Normal University, Jinan 250014, China;
2. Department of Physics, Liaoning University, Shenyang 110036, China
Abstract  

By utilizing the density functional theory (DFT) and the time-dependent density functional theory (TDDFT), the excited state intramolecular proton transfer (ESIPT) mechanism of o-hydroxynaphthyl phenanthroimidazole (HNPI) is studied in detail. Upon photo is excited, the intramolecular hydrogen bond is obviously enhanced in the S1 state, which thus promotes the ESIPT process. Hydrogen bond is shown to be strengthened via comparing the molecular structures and the infrared vibration spectra of the S0 and S1 states. Through analyzing the frontier molecular orbitals, we can conclude that the excitation is a type of the intramolecular charge transfer excitation, which also indicates the trend of proton transfer in S1 state. The vertical excitation based on TDDFT calculation can effectively repeat the absorption and fluorescence spectra of the experiment. However, the fluorescence spectrum of normal structure, which is similar to the spectrum of isomer structure is not detected in the experiment. It can be concluded that the fluorescence measured in the experiment is attributed to both structures. In addition, by analyzing the potential energy curves (PECs) calculated by the B3LYP functional method, it can be derived that since the molecule to cross the potential barrier in the S1 state is smaller than in the S0 state and the reverse proton transfer process in the S1 state is more difficult than in the S0 state, the ESIPT occurs in the S1 state.

Keywords:  hydrogen bond      ESIPT      RDG      PECs  
Received:  10 October 2017      Revised:  22 November 2017      Accepted manuscript online: 
PACS:  31.15.ae (Electronic structure and bonding characteristics)  
  31.15.A- (Ab initio calculations)  
  31.15.es (Applications of density-functional theory (e.g., to electronic structure and stability; defect formation; dielectric properties, susceptibilities; viscoelastic coefficients; Rydberg transition frequencies))  
Fund: 

Project supported by the Shandong Provincial Higher Educational Science and Technology Program, China (Grant No. J17KA186), the Taishan Scholar Project of Shandong Province, China, the Natural Science Foundation of Liaoning Province, China (Grant No. 20170540408), and the Science and Technology Plan Project of Shenyang City, China (Grant No. 17-231-1-06).

Corresponding Authors:  Yong-Qing Li, Yu-Zhi Song     E-mail:  yqli@lnu.edu.cn;yzsong@sdnu.edu.cn
About author:  31.15.ae; 31.15.A-; 31.15.es

Cite this article: 

Shuang Liu(刘爽), Yan-Zhen Ma(马艳珍), Yun-Fan Yang(杨云帆), Song-Song Liu(刘松松), Yong-Qing Li(李永庆), Yu-Zhi Song(宋玉志) Excited state intramolecular proton transfer mechanism of o-hydroxynaphthyl phenanthroimidazole 2018 Chin. Phys. B 27 023103

[1] Zhao G J and Han K L 2008 J. Comput. Chem. 29 2010
[2] Zhao G J, Han K L and Stang P J 2009 J. Chem. Theory Comput. 5 1955
[3] Zhao G J and Han K L 2008 Biophys. J. 94 38
[4] Zhao G J and Han K L 2010 Phys. Chem. Chem. Phys. 12 8914
[5] Zhou P, Song P, Liu J, Han K and He G 2009 Phys. Chem. Chem. Phys. 11 9440
[6] Weller A and Elektrochem Z 1956 Phys. Chem. 60 1144
[7] Weller A 1955 Naturwissenschaften 42175
[8] Han K L, He G Z and Lou N Q 1996 J. Chem. Phys. 105 8699
[9] Li D, Huang X, Han K and Zhan C G 2011 J. Am. Chem. Soc. 133 7416
[10] Yang Y, Zhao J and Li Y 2016 Sci. Rep. UK 6 32152
[11] Zhang Y, Sun M and Li Y 2016 Sci. Rep. UK 6 25568
[12] Zhao J, Liu X and Zheng Y 2017 J. Lumin. 188 1
[13] Zhao G J and Han K L 2007 J. Chem. Phys. 127 024306
[14] Chai S et al. 2009 Phys. Chem. Chem. Phys. 11 4385
[15] Zhao G J, Liu Y H, Han K L and Dou Y 2008 Chem. Phys. Lett. 453 29
[16] Zhao G J and Han K L 2012 Acc. Chem. Res. 45 404
[17] Zhao G J and Han K L 2007 J. Phys. Chem. A 111 2469
[18] Zhao G J, Han K L, Lei Y B and Dou Y S 2007 J. Chem. Phys. 127 415
[19] Song P and Ma F C 2013 Int. Rev. Phys. Chem. 32 589
[20] Demchenko A P, Tang K C and Chou P T 2013 Chem. Soc. Rev. 42 1379
[21] Tseng H W et al. 2015 J. Phys. Chem. Lett. 6 1477
[22] Chen J S, Zhou P W, Yang S Q, Fu A P and Chu T S 2013 Phys. Chem. Chem. Phys. 15 16183
[23] Yu F, Li P, Wang B and Han K 2013 J. Am. Chem. Soc. 135 7674
[24] Ji E K and Park S Y 2011 Adv. Mater. 23 3615
[25] Tang K C et al. 2011 J. Am. Chem. Soc. 133 17738
[26] P S S, J G, Y P T and E V 2009 J. Phys. Chem. B 113 4953
[27] Li Y, Xu B, Song P, Ma F C and Sun M 2017 J. Phys. Chem. C 121 12546
[28] Xu B, Li Y, Peng S, Ma F and Sun M 2017 Sci. Rep. UK 7 45688
[29] Jayabharathi J, Ramanathan P and Thanikachalam V 2014 New J. Chem. 39 142
[30] Shahid M and Misra A 2016 J. Photoch. Photobio. A 335 190
[31] Frisch M J et al. 2009 Gaussian 09, Revision A.02, Gaussian, Inc. Wallingford CT
[32] Lee C, Yang W and Parr R G 1988 Phys. Rev. B 37 785
[33] Rassolov V A, Ratner M A, Pople J A, Redfern P C and Curtiss L A 2001 J. Comput. Chem. 22 976
[34] Cammi R and Tomasi J 1995 J. Comput. Chem. 16 1449
[35] Cancés E, Mennucci B and Tomasi J 1997 J. Chem. Phys. 107 3032
[36] Johnson E R et al. 2010 J. Am. Chem. Soc. 132 6498
[37] Tang W, Sanville E and Henkelman G 2009 J. Phys.:Condens. Matter 21 084204
[38] Hui L et al. 2015 Spectrochim. Acta A 141 211
[39] Zhao X and Chen M 2011 Chem. Phys. Lett. 512 35
[40] Zhao G J, Northrop B H, Han K L and Stang P J 2010 J. Phys. Chem. A 114 9007
[41] Liu Y H, Lan S C, Zhu C and Lin S H 2015 J. Phys. Chem. A 119 6269
[42] Chou P, Mcmorrow D, Aartsma T J and Kasha M 1984 J. Phys. Chem. 88 370
[43] Liu Y H, Mehata M S and Lan S C 2014 Spectrochim. Acta A 128 280
[44] Lu T and Chen F 2012 J. Comput. Chem. 33 580
[45] Zhao J, Ji S, Chen Y, Guo H and Yang P 2012 Phys. Chem. Chem. Phys. 14 8803
[46] Grabowski Z R, Rotkiewicz K and Rettig W 2003 Chem. Rev. 103 3899
[47] Marcus R A 1968 Electrochimica Acta 13 995
[48] Shahid M and Misra 2017 J. Photoch. Photobio. A 335 190
[49] Johnson E R et al. 2010 J. Am. Chem. Soc. 132 6498
[50] Tang W, Sanville E and Henkelman G 2009 J. Phys.:Condens. Matter. 21 084204
[1] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[2] Concerted versus stepwise mechanisms of cyclic proton transfer: Experiments, simulations, and current challenges
Yi-Han Cheng(程奕涵), Yu-Cheng Zhu(朱禹丞), Xin-Zheng Li(李新征), and Wei Fang(方为). Chin. Phys. B, 2023, 32(1): 018201.
[3] A DFT/TD-DFT study of effect of different substituent on ESIPT fluorescence features of 2-(2'-hydroxyphenyl)-4-chloro- methylthiazole derivatives
Shen-Yang Su(苏申阳), Xiu-Ning Liang(梁秀宁), and Hua Fang(方华). Chin. Phys. B, 2022, 31(3): 038202.
[4] Raman investigation of hydration structure of iodide and iodate
Zhe Liu(刘喆), Hong-Liang Zhao(赵洪亮), Hong-Zhi Lang(郎鸿志), Ying Wang(王莹), Zhan-Long Li(李占龙), Zhi-Wei Men(门志伟), Sheng-Han Wang(汪胜晗), and Cheng-Lin Sun(孙成林). Chin. Phys. B, 2021, 30(4): 043301.
[5] Theoretical verification of intermolecular hydrogen bond induced thermally activated delayed fluorescence in SOBF-Ome
Mu-Zhen Li(李慕臻), Fei-Yan Li(李飞雁), Qun Zhang(张群), Kai Zhang(张凯), Yu-Zhi Song(宋玉志), Jian-Zhong Fan(范建忠), Chuan-Kui Wang(王传奎), and Li-Li Lin(蔺丽丽). Chin. Phys. B, 2021, 30(12): 123302.
[6] Stable water droplets on composite structures formed by embedded water into fully hydroxylated β-cristobalite silica
Hanqi Gong(龚菡琪), Chonghai Qi(齐崇海), Junwei Yang(杨俊伟), Jige Chen(陈济舸), Xiaoling Lei(雷晓玲), Liang Zhao(赵亮), and Chunlei Wang(王春雷). Chin. Phys. B, 2021, 30(1): 010503.
[7] Oscillation of S5 helix under different temperatures in determination of the open probability of TRPV1 channel
Tie Li(李铁), Jun-Wei Li(李军委), Chun-Li Pang(庞春丽), Hailong An(安海龙), Yi-Zhao Geng(耿轶钊), Jing-Qin Wang(王景芹). Chin. Phys. B, 2020, 29(9): 098701.
[8] Rules essential for water molecular undercoordination
Chang Q Sun(孙长庆). Chin. Phys. B, 2020, 29(8): 088203.
[9] Exploration and elaboration of photo-induced proton transfer dynamical mechanism for novel 2-[1,3]dithian-2-yl-6-(7aH-indol-2-yl)-phenol sensor
Lei Xu(许磊), Tian-Jie Zhang(张天杰), Qiao-Li Zhang(张巧丽), Da-Peng Yang(杨大鹏). Chin. Phys. B, 2020, 29(5): 053102.
[10] Zero-point fluctuation of hydrogen bond in water dimer from ab initio molecular dynamics
Wan-Run Jiang(姜万润)†, Rui Wang(王瑞)†, Xue-Guang Ren(任雪光), Zhi-Yuan Zhang(张志远), Dan-Hui Li(李丹慧), and Zhi-Gang Wang(王志刚)‡. Chin. Phys. B, 2020, 29(10): 103101.
[11] The substituent effect on the excited state intramolecular proton transfer of 3-hydroxychromone
Yuzhi Song(宋玉志), Songsong Liu(刘松松), Jiajun Lu(陆佳骏), Hui Zhang(张慧), Changzhe Zhang(张常哲), Jun Du(杜军). Chin. Phys. B, 2019, 28(9): 093102.
[12] Effects of Mg2+ on the binding of the CREB/CRE complex: Full-atom molecular dynamics simulations
Song Mao(毛松), Shuai Wang(王帅), Haiyou Deng(邓海游), Ming Yi(易鸣). Chin. Phys. B, 2019, 28(7): 078701.
[13] Low-lying electronic states of aluminum monoiodide
Xiang Yuan(袁翔), Shuang Yin(阴爽), Yi Lian(连艺), Pei-Yuan Yan(颜培源), Hai-Feng Xu(徐海峰), Bing Yan(闫冰). Chin. Phys. B, 2019, 28(4): 043101.
[14] Exploring the effect of aggregation-induced emission on the excited state intramolecular proton transfer for a bis-imine derivative by quantum mechanics and our own n-layered integrated molecular orbital and molecular mechanics calculations
Huifang Zhao(赵慧芳), Chaofan Sun(孙朝范), Xiaochun Liu(刘晓春), Hang Yin(尹航), Ying Shi(石英). Chin. Phys. B, 2019, 28(1): 018201.
[15] Enhancement of water self-diffusion at super-hydrophilic surface with ordered water
Xiao-Meng Yu(于晓萌), Chong-Hai Qi(齐崇海), Chun-Lei Wang(王春雷). Chin. Phys. B, 2018, 27(6): 060101.
No Suggested Reading articles found!