Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(2): 023401    DOI: 10.1088/1674-1056/27/2/023401
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Exploring the methane combustion reaction: A theoretical contribution

Ya Peng(彭亚), Zhong-An Jiang(蒋仲安), Ju-Shi Chen(陈举师)
School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China
Abstract  

This paper represents an attempt to extend the mechanisms of reactions and kinetics of a methane combustion reaction. Three saddle points (SPs) are identified in the reaction CH4+O(3P) → OH +CH3 using the complete active space selfconsistent field and the multireference configuration interaction methods with a proper active space. Our calculations give a fairly accurate description of the regions around the twin first-order SPs (3A' and 3A") along the direction of O(3P) attacking a near-collinear H-CH3. One second-order SP2nd (3E) between the above twin SPs is the result of the C3v symmetry Jahn-Teller coupling within the branching space. Further kinetic calculations are performed with the canonical unified statistical theory method with the temperature ranging from 298 K to 1000 K. The rate constants are also reported. The present work reveals the reaction mechanism of hydrogen-abstraction by the O(3P) from methane, and develops a better understanding for the role of SPs. In addition, a comparison of the reactions of O(3P) with methane through different channels allows a molecule-level discussion of the reactivity and mechanism of the title reaction.

Keywords:  combustion reaction      reaction mechanism      rate constant      saddle point  
Received:  04 August 2017      Revised:  03 November 2017      Accepted manuscript online: 
PACS:  34.10.+x (General theories and models of atomic and molecular collisions and interactions (including statistical theories, transition state, stochastic and trajectory models, etc.))  
  31.15.xv (Molecular dynamics and other numerical methods)  
  34.50.Lf (Chemical reactions)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 51574016 and 51604018).

Corresponding Authors:  Ya Peng, Zhong-An Jiang     E-mail:  pengyaustb@sina.com;jza1963@263.net
About author:  34.10.+x; 31.15.xv; 34.50.Lf

Cite this article: 

Ya Peng(彭亚), Zhong-An Jiang(蒋仲安), Ju-Shi Chen(陈举师) Exploring the methane combustion reaction: A theoretical contribution 2018 Chin. Phys. B 27 023401

[1] Espinosa-Garcia J, Rangel C and Garcia-Bernaldez J C 2015 Phys. Chem. Chem. Phys. 17 6009
[2] Espinosa-Garcia J and Garcia-Bernaldez J C 2000 Phys. Chem. Chem. Phys. 2 2345
[3] Zhang J and Liu K 2011 Chem. Asian J. 6 3132
[4] Yang J Y, Shao K J, Zhang D, Shuai Q A, Fu B N, Zhang D H and YangX M 2014 J. Phys. Chem. Lett. 5 3106
[5] Dianat A, Seriani N, Ciacchi L C, Bobeth M and Cuniberti G 2014 Chem. Phys. 443 53
[6] Zhang L, Luo W L, Ruan W, Jiang G and Zhu Z H 2008 Chin. Phys. B 17 2023
[7] Hou X W, Wan M F and Ma Z Q 2012 Chin. Phys. B 21 103301
[8] Galashev A Y 2013 Chin. Phys. B 22 123602
[9] Troya D, Schatz G C, Garton D J, Brunsvold A L and Minton T K 2004 J. Chem. Phys. 120 731
[10] Sweeney G M, Watson A and McKendrick K G 1997 J. Chem. Phys. 106 9172
[11] Ausfelder F, Kelso H and McKendrick K G 2002 Phys. Chem. Chem. Phys. 4 473
[12] Troya D and Garcia-Molina E 2005 J. Phys. Chem. A 109 3015
[13] Zhang J M, Lahankar S A, Garton D J, Minton T K, Zhang W Q andYang X M 2011 J. Phys. Chem. A 115 10894
[14] Garton D J, Minton T K, Troya D, Pascual R and Schatz G C 2003 J. Phys. Chem. A 107 4583
[15] Li Y L, Suleimanov Y V, Yang M H, Green W H and Guo H 2013 J. Phys. Chem. Lett. 4 48
[16] Liu R, Yang M H, Gabor C, Bowman J M, Li J and Guo H 2012 J. Phys. Chem. Lett. 3 3776
[17] Jiang B and Guo H 2014 J. Chin. Chem. Soc. 61 847
[18] Thanh L N and Stanton J F 2017 J. Chem. Phys. 147 152704
[19] Jing F Q, Cao J W, Liu X J, Hu Y F, Ma H T and Bian W S 2016 Chin. J. Chem. Phys. 29 430
[20] Orlando R N, Francisco M B C and Truhlar D G 1999 J. Chem. Phys. 111 10046
[21] Ma H T, Liu X J, Bian W S, Meng L P and Zheng S J 2016 ChemPhysChem 7 1786
[22] Minyaev R M, Getmanskii I V and Quapp W 2004 Russ. J Phys. Chem. A 78 1494
[23] Yang C L, Wang M S, Liu W W, Zhang Z H and Ma X G 2013 Chin. Phys. B 22 63102
[24] Xie T, Wang D Y, Bowman J M and Manolopoulos D E 2002 J. Chem. Phys. 116 7461
[25] Walch S P and Dunning T H 1980 J. Chem. Phys. 72 3221
[26] Andresen P and Luntz A C 1980 J. Chem. Phys. 72 5842
[27] Kleinermanns K and Luntz A C 1981 J. Phys. Chem. 85 1966
[28] Suzuki T and Hirota E 1993 J. Chem. Phys. 98 2387
[29] Westenberg A A and Haas N D 1967 J. Chem. Phys. 46 490
[30] Baulch D L, Cobos C J, Cox R A, Esser C, Frank P, Just T, Kerr J A,Pilling M J, Troe J, Walker R W and Warnatz J 1992 J. Phys. Chem. Ref. Data 21 411
[31] Cohen N 1986 Int. J. Chem. Kinet. 18 59
[32] Gonzalez-Lavado E, Corchado J C and Espinosa-Garcia J 2014 J. Chem. Phys. 140 064310
[33] Gonzalez-Lavado E, Corchado J C, Suleimanov Y V, Green W H andEspinosa-Garcia J 2014 J. Phys. Chem. A 118 3243
[34] Czako G and Bowman J M 2012 Proc. Natl. Acad. Sci. USA 109 7997
[35] Gonzaclez M, Hernando J, Millacn J and Sayocs R 1999 J. Chem. Phys. 110 7326
[36] Suleimanov Y V, Allen J W and Green W H 2013 Comput. Phys. Commun. 184 833
[37] Suleimanov Y V, Aoiz F J and Guo H 2016 J. Phys. Chem. A 120 8488
[38] Suleimanov Y V and Espinosa-Garcia J 2016 J. Phys. Chem. B 120 1418
[39] Corchado J C, Espinosa-Garcia J, Roberto-Neto O, Chuang Y Y andTruhlar D G 1998 J. Phys. Chem. A 102 4899
[40] Zhao H L, Wang W J and Zhao Y 2016 J. Phys. Chem. A 120 7589
[41] Chen F, Xu T F, Yan D D and Li W Z 1995 Chin. Phys. B[Acta Phys. Sin. (Overseas Edition)] 4 125
[42] Chen F and Li W Z 1996 Chin. Phys. B[Acta Phys. Sin. (Overseas Edition)] 5 321
[43] Cederbaum L S, Domcke W and Koppel H 1978 Chem. Phys. 33 319
[44] Opalka D, Segado M, Poluyanov L V and Domcke W 2010 Phys. Rev. A 81 042501
[45] Domcke W, Mishra S and Poluyanov L V 2006 Chem. Phys. 322 405
[46] Gonzalez C, McDouall J J W and Schlegel H B 1990 J. Phys. Chem. 94 7467
[47] Peng Y, Jiang Z A and Chen J S 2017 J. Phys. Chem. A 121 2209
[48] Shu Y N, Parker K A and Truhlar D G 2017 J. Phys. Chem. Lett. 8 2107
[49] Wu Y N, Zhang C F and Ma H T 2017 RSC Adv. 7 12074
[50] Yarkony D R 1998 Acc. Chem. Res. 31 511
[51] Werner H J, Knowles P J, Knizia G, et al. 2008 MOLPRO, version2008.1, a package of ab initio programs, see http://www.molpro.net
[52] Liu J Y, Li Z S, Dai Z W, Zhang G and Sun C C 2004 Chem. Phys. 296 43
[53] Werner H J and Knowles P J 1985 J. Chem. Phys. 82 5053
[54] Werner H J and Knowles P J 1985 Chem. Phys. Lett. 115 259
[55] Werner H J and Knowles P J 1988 J. Chem. Phys. 89 5803
[56] Knowles P J and Werner H J 1988 Chem. Phys. Lett. 145 514
[57] Schirmer J, Cederbaum L S, Domcke W and Niessen W V 1977 Chem. Phys. 26 149
[58] Zheng J J, Zhao Y and Truhlar D G 2009 J. Chem. Theor. Comput. 5 808
[59] Matteoli E and Mansoori G A 1995 J. Chem. Phys. 103 4672
[60] Peterson K A and Dunning T H 2002 J. Chem. Phys. 117 10548
[61] Partridge H and Schwenke D W 1997 J. Chem. Phys. 106 4618
[62] Fukui K 1970 J. Phys. Chem. 74 4161
[63] Yarkony D R 1996 Rev. Mod. Phys. 68 985
[64] Langhoff S R and Davidson E R 1974 Int. J. Quantum Chem. 8 61
[65] Hu W P and Truhlar D G 1995 J. Am. Chem. Soc. 117 10726
[66] Hu W P and Truhlar D G 1996 J. Am. Chem. Soc. 118 860
[67] Garrett B C and Truhlar D G 1979 J. Phys. Chem. 83 1079
[68] Zheng J, Zhang S, Lynch B J, et al. POLYRATE, version 2015, Computer Program for the Calculation of Chemical Reaction Rates for Polyatomics, see https://comp.chem.umn.edu/polyrate/
[69] Bruce C G and Donaldf G T 1983 J. Chem. Phys. 79 4931
[70] Li Y L, Suleimanov Y V, Green W H and Guo H 2014 J. Phys. Chem. A 118 1989
[1] A new global potential energy surface of the ground state of SiH2+ (X2A1) system and dynamics calculations of the Si+ + H2 (v0 = 2, j0 = 0) → SiH+ + H reaction
Yong Zhang(张勇), Xiugang Guo(郭秀刚), and Haigang Yang(杨海刚). Chin. Phys. B, 2022, 31(11): 113101.
[2] Transition metal anchored on C9N4 as a single-atom catalyst for CO2 hydrogenation: A first-principles study
Jia-Liang Chen(陈嘉亮), Hui-Jia Hu(胡慧佳), and Shi-Hao Wei(韦世豪). Chin. Phys. B, 2022, 31(10): 107306.
[3] Single boron atom anchored on graphitic carbon nitride nanosheet (B/g-C2N) as a photocatalyst for nitrogen fixation: A first-principles study
Hao-Ran Zhu(祝浩然), Jia-Liang Chen(陈嘉亮), and Shi-Hao Wei(韦世豪). Chin. Phys. B, 2021, 30(8): 083101.
[4] Decomposition reaction of phosphate rock under the action of microwave plasma
Hui Zheng(郑慧), Meng Yang(杨猛), Cheng-Fa Jiang(江成发), and Dai-Jun Liu(刘代俊). Chin. Phys. B, 2021, 30(4): 045201.
[5] First-principles study of co-adsorption behavior of O2 and CO2 molecules on δ -Pu(100) surface
Chun-Bao Qi(戚春保), Tao Wang(王涛), Ru-Song Li(李如松), Jin-Tao Wang(王金涛), Ming-Ao Qin(秦铭澳), and Si-Hao Tao(陶思昊). Chin. Phys. B, 2021, 30(2): 026601.
[6] Exact quantum dynamics study of the H(2S)+SiH+(X1Σ+) reaction on a new potential energy surface of SiH2+(X2A1)
Wen-Li Zhao(赵文丽), Rui-Shan Tan(谭瑞山), Xue-Cheng Cao(曹学成), Feng Gao(高峰), and Qing-Tian Meng(孟庆田). Chin. Phys. B, 2021, 30(12): 123403.
[7] Water on surfaces from first-principles molecular dynamics
Peiwei You(游佩桅), Jiyu Xu(徐纪玉), Cui Zhang(张萃), and Sheng Meng(孟胜)$. Chin. Phys. B, 2020, 29(11): 116804.
[8] Isotope effect and Coriolis coupling effect forthe Li + H(D)Cl→LiCl + H(D) reaction
Hongsheng Zhai(翟红生), Guanglei Liang(梁广雷), Junxia Ding(丁俊霞), Yufang Liu(刘玉芳). Chin. Phys. B, 2019, 28(5): 053401.
[9] Laser absorption spectroscopy for high temperature H2O time-history measurement at 2.55 μm during oxidation of hydrogen
Yu-Dan Gou(苟于单), De-Xiang Zhang(张德翔), Yi-Jun Wang(王易君), Chang-Hua Zhang(张昌华), Ping Li(李萍), Xiang-Yuan Li(李象远). Chin. Phys. B, 2018, 27(7): 074213.
[10] Dynamics of the CH4+O(3P)→CH3(ν=0)+OH(ν'=0) reaction
Zhong-An Jiang(蒋仲安), Ya Peng(彭亚), Ju-Shi Chen(陈举师), Gui Lan(兰桂), Hao-Yu Lin(林浩宇). Chin. Phys. B, 2018, 27(6): 063401.
[11] Density function theoretical study on the complex involved in Th atom-activated C-C bond in C2H6
Qing-Qing Wang(王青青), Peng Li(李鹏), Tao Gao(高涛), Hong-Yan Wang(王红艳), Bing-Yun Ao(敖冰云). Chin. Phys. B, 2016, 25(6): 063102.
[12] Growth mechanism of atomic-layer-deposited TiAlC metal gatebased on TiCl4 and TMA precursors
Jinjuan Xiang(项金娟), Yuqiang Ding(丁玉强), Liyong Du(杜立永), Junfeng Li(李俊峰),Wenwu Wang(王文武), Chao Zhao(赵超). Chin. Phys. B, 2016, 25(3): 037308.
[13] State-to-state quantum dynamics of N(2D)+HD (v=0, j=0) reaction
Yong Zhang(张勇). Chin. Phys. B, 2016, 25(12): 123104.
[14] Theoretical prediction of energy dependence for D+BrO→DBr+O reaction: The rate constant and product rotational polarization
Zhang Ying-Ying (张莹莹), Xie Ting-Xian (解廷献), Li Ze-Rui (李泽瑞), Shi Ying (石英), Jin Ming-Xing (金明星). Chin. Phys. B, 2015, 24(3): 038201.
No Suggested Reading articles found!