Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(2): 023101    DOI: 10.1088/1674-1056/27/2/023101
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Theoretical analysis of suppressing Dick effect in Ramsey-CPT atomic clock by interleaving lock

Xiao-Lin Sun(孙晓林)1,2, Jian-Wei Zhang(张建伟)1,3, Peng-Fei Cheng(程鹏飞)1,2, Ya-Ni Zuo(左娅妮)1,2, Li-Jun Wang(王力军)1,2,3
1. State Key Laboratory of Precision Measurement Technology and Instruments, Tsinghua University, Beijing 100084, China;
2. Department of Physics, Tsinghua University, Beijing 100084, China;
3. Department of Precision Instruments, Tsinghua University, Beijing 100084, China
Abstract  For most pulsed atomic clocks, the Dick effect is one of the main limits to reach its frequency stability limitation due to quantum projection noise. In this paper, we measure the phase noise of the local oscillator in the Ramsey-CPT atomic clock and calculate the Dick effect induced Allan deviation based on a three-level atomic model, which is quite different from typical atomic clocks. We further present a detailed analysis of optimizing the sensitivity function and minimizing the Dick effect by interleaving lock. By optimizing the duty circle of laser pulses, average time during detection and optical intensity of laser beam, the Dick effect induced Allan deviation can be reduced to the level of 10-14.
Keywords:  coherent population trapping      Dick effect      atomic clock  
Received:  29 August 2017      Revised:  14 November 2017      Accepted manuscript online: 
PACS:  31.15.-p (Calculations and mathematical techniques in atomic and molecular physics)  
  42.50.Gy (Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)  
  95.55.Sh (Auxiliary and recording instruments; clocks and frequency standards)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2016YFA0302101) and the Initiative Program of State Key Laboratory of Precision Measurement Technology and Instruments.
Corresponding Authors:  Jian-Wei Zhang     E-mail:  zhangjw@tsinghua.edu.cn
About author:  31.15.-p; 42.50.Gy; 95.55.Sh

Cite this article: 

Xiao-Lin Sun(孙晓林), Jian-Wei Zhang(张建伟), Peng-Fei Cheng(程鹏飞), Ya-Ni Zuo(左娅妮), Li-Jun Wang(王力军) Theoretical analysis of suppressing Dick effect in Ramsey-CPT atomic clock by interleaving lock 2018 Chin. Phys. B 27 023101

[1] Godone A, Micalizio S, Levi F and Calosso C 2006 Phys. Rev. A 74 043401
[2] Micalizio S, Calosso C E., Godone A and Levi F 2012 Metrologia 49 425
[3] Lin J, Deng J, Ma Y, He H and Wang Y 2012 Opt. Lett. 37 5036
[4] Danet J M, Kozlova O, Yun P, Guérande S and Clercq E D2014 Eur. Phys. J. Web Conf. 77 00017
[5] Yun P, Guérandel S and Clercq E D 2016 J. Appl. Phys. 119 244502
[6] Abdel Hafiz M and Boudot R 2015 J. Appl. Phys. 118 124903
[7] Dong G, Deng J, Lin J, Zhang S, Lin H and Wang Y 2017 Chin. Opt. Lett. 15 040201
[8] Li D, Shi D, Hu E, Wang Y, Tian L, Zhao J and Wang Z 2014 Appl. Phys. Express 7 112203
[9] Liu X, Mérolla J M, Guérandel S, Clercq E D and Boudot R 2013 Opt. Express 21 12451
[10] Taichenachev A V, Yudin V I, Velichansky V L, Kargapoltsev S V, Wynands R, Kitching J and Hollberg L 2004 JETP Lett. 80 236
[11] Zanon T, Guerandel S, Clercq E D, Holleville D, Dimarcq N and Clairon A 2005 Phys. Rev. Lett. 94 193002
[12] Jau Y Y, Miron E, Post A B, Kuzma N N and Happer W 2004 Phys. Rev. Lett. 93 160802
[13] Shah V, Knappe S, Hollberg L and Kitching J 2007 Opt. Lett. 32 1244
[14] Dick G J 1987 Proc. Precise Time and Time Interval, December 1-3, 1987, Redondo Beach, CA, p. 133
[15] Dick G J, Prestage J D, Greenhall C A and Maleki L 1990 Proc. 22nd Precise Time and Time Interval (PTTI) Applications and Planning Meeting, December 4-6, 1990, Vienna, VA, p. 487
[16] Audoin C, Santarelli G, Makdissi A and Clairon A 1998 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45 877
[17] Santarelli G, Audoin C, Makdissi A, Laurent P, Dick G J and Clairon A 1998 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45 887
[18] Greenhall C A 1998 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45 895
[19] Biedermann G W, Takase K, Wu X, Deslauriers L, Roy S and Kasevich M A 2013 Phys. Rev. Lett. 111 170802
[20] Wang L J 2014 Chin. Phys. Lett. 31 080601
[21] Zhang J W, Miao K and Wang L J 2015 Chin. Phys. Lett. 32 010601
[22] Chen Y H, She L, Wang M, Yang Z H, Liu H and Li J M 2016 Chin. Phys. B 25 120601
[23] Quessada A, Kovacich R P, Courtillot I, Clairon A, Santarelli G and Lemonde P 2003 J. Opt. B:Quantum Semiclass. Opt. 5 S150
[24] Westergaard P G, Lodewyck J and Lemonde P 2010 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57 623
[25] Schioppo M, Brown R C, McGrew W F, Hinkley N, Fasano R J, Beloy K, Yoon T H, Milani G, Nicolodi D, Sherman J A, Phillips N B, Oates C W and Ludlow A D 2017 Nat. Photon. 11 48
[26] Santarelli G, Laurent P, Lemonde P, Clairon A, Mann A G, Chang S, Luiten A N and Salomon C 1999 Phys. Rev. Lett. 82 4619
[27] Weyers S, Lipphardt B and Schnatz H 2009 Phys. Rev. A 79 031803
[28] Alzetta G, Gozzini A, Moi L and Orriols G 1976 Nuovo Cim. 36 5
[29] Vanier J 2005 Appl. Phys. B 81 421
[30] Shah V and Kitching J 2010 Adv. At. Mol. Opt. Phys. 59 21
[31] Guérandel S, Zanon T, Castagna N, Dahes F, Clercq E D, Dimarcq N and Clairon A 2007 IEEE Trans. Instrum. Meas. 56 383
[32] Danet J M, Lours M, Guérandel S and Clercq E D 2014 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 61 567
[33] Sun X L, Zhang J W, Cheng P F, Xu C, Zhao L and Wang L J 2016 Opt. Express 24 4532
[34] Cheng P F, Sun X L, Xu C, Gao C, Zhao L, Zhang J W and Wang L J 2016 Frequency Control Symposium (IFCS), May 9-12, 2016, New Orleans, USA, p. 1
[35] Yang J, Liu G B and Gu S H 2012 Acta Phys. Sin 61 043202(in Chinese)
[36] Zhen H H and Dong S D 2016 Chin. Phys. B 25 124201
[37] Zhou M and Xu X Y 2016 Physics 45 431(in Chinese)
[38] Shi F, Cui Y S, Zhang Z W, Zhao H, Wang N R, Zhang S K, Yang R F, Nian F and Feng K M 2014 Chin. Opt. Lett. 12 S22205
[39] Wang X M, Meng Y L, Wang Y N, Wan J Y, Yu M Y, Wang X, Xiao L, Li T, Cheng H D and Liu L 2017 Chin. Phys. Lett. 34 063702
[1] Effective sideband cooling in an ytterbium optical lattice clock
Jin-Qi Wang(王进起), Ang Zhang(张昂), Cong-Cong Tian(田聪聪), Ni Yin(殷妮), Qiang Zhu(朱强), Bing Wang(王兵), Zhuan-Xian Xiong(熊转贤), Ling-Xiang He(贺凌翔), and Bao-Long Lv(吕宝龙). Chin. Phys. B, 2022, 31(9): 090601.
[2] High-performance coherent population trapping clock based on laser-cooled atoms
Xiaochi Liu(刘小赤), Ning Ru(茹宁), Junyi Duan(段俊毅), Peter Yun(云恩学), Minghao Yao(姚明昊), and Jifeng Qu(屈继峰). Chin. Phys. B, 2022, 31(4): 043201.
[3] Calculations of dynamic multipolar polarizabilities of the Cd clock transition levels
Mi Zhou(周密) and Li-Yan Tang(唐丽艳). Chin. Phys. B, 2021, 30(8): 083102.
[4] Atomic magnetometer with microfabricated vapor cells based on coherent population trapping
Xiaojie Li(李晓杰), Yue Shi(史越), Hongbo Xue(薛洪波), Yong Ruan(阮勇), and Yanying Feng(冯焱颖). Chin. Phys. B, 2021, 30(3): 030701.
[5] Ramsey-coherent population trapping Cs atomic clock based on lin||lin optical pumping with dispersion detection
Peng-Fei Cheng(程鹏飞), Jian-Wei Zhang(张建伟), Li-Jun Wang(王力军). Chin. Phys. B, 2019, 28(7): 070601.
[6] Investigation of the nonlinear CPT spectrum of 87Rb and its application for large dynamic magnetic measurement
Chi Xu(徐迟), Shi-Guang Wang(王时光), Yong Hu(胡勇), Yan-Ying Feng(冯焱颖), Li-Jun Wang(王力军). Chin. Phys. B, 2017, 26(6): 064203.
[7] Rubidium-beam microwave clock pumped by distributed feedback diode lasers
Chang Liu(刘畅), Sheng Zhou(周晟), Yan-Hui Wang(王延辉), Shi-Min Hou(侯士敏). Chin. Phys. B, 2017, 26(11): 113201.
[8] Coherent population trapping magnetometer by differential detecting magneto-optic rotation effect
Fan Zhang(张樊), Yuan Tian(田原), Yi Zhang(张奕), Si-Hong Gu(顾思洪). Chin. Phys. B, 2016, 25(9): 094206.
[9] Image transfer through coherent population trapping based on an atomic ensemble
Zhen-Hai Han(韩振海), Dong-Sheng Ding(丁冬生). Chin. Phys. B, 2016, 25(12): 124201.
[10] Evaluation of the frequency instability limited by Dick effect in the microwave 199Hg+ trapped-ion clock
Yi-He Chen(陈义和), Lei She(佘磊), Man Wang(汪漫), Zhi-Hui Yang(杨智慧), Hao Liu(柳浩), Jiao-Mei Li(李交美). Chin. Phys. B, 2016, 25(12): 120601.
[11] An optimized ion trap geometry to measure quadrupole shifts of 171Yb+ clocks
N Batra, B K Sahoo, S De. Chin. Phys. B, 2016, 25(11): 113703.
[12] Optical nuclear spin polarization in quantum dots
Ai-Xian Li(李爱仙), Su-Qing Duan(段素青), Wei Zhang(张伟). Chin. Phys. B, 2016, 25(10): 108506.
[13] Ramsey-CPT spectrum with the Faraday effect and its application to atomic clocks
Tian Yuan (田原), Tan Bo-Zhong (谭伯仲), Yang Jing (杨晶), Zhang Yi (张奕), Gu Si-Hong (顾思洪). Chin. Phys. B, 2015, 24(6): 063302.
[14] Phase-controlled coherent population trapping in superconducting quantum circuits
Cheng Guang-Ling (程广玲), Wang Yi-Ping (王一平), Chen Ai-Xi (陈爱喜). Chin. Phys. B, 2015, 24(4): 044204.
[15] Integrated physics package of a chip-scale atomic clock
Li Shao-Liang (李绍良), Xu Jing (徐静), Zhang Zhi-Qiang (张志强), Zhao Lu-Bing (赵璐冰), Long Liang (龙亮), Wu Ya-Ming (吴亚明). Chin. Phys. B, 2014, 23(7): 074302.
No Suggested Reading articles found!