|
|
Theoretical analysis of suppressing Dick effect in Ramsey-CPT atomic clock by interleaving lock |
Xiao-Lin Sun(孙晓林)1,2, Jian-Wei Zhang(张建伟)1,3, Peng-Fei Cheng(程鹏飞)1,2, Ya-Ni Zuo(左娅妮)1,2, Li-Jun Wang(王力军)1,2,3 |
1. State Key Laboratory of Precision Measurement Technology and Instruments, Tsinghua University, Beijing 100084, China; 2. Department of Physics, Tsinghua University, Beijing 100084, China; 3. Department of Precision Instruments, Tsinghua University, Beijing 100084, China |
|
|
Abstract For most pulsed atomic clocks, the Dick effect is one of the main limits to reach its frequency stability limitation due to quantum projection noise. In this paper, we measure the phase noise of the local oscillator in the Ramsey-CPT atomic clock and calculate the Dick effect induced Allan deviation based on a three-level atomic model, which is quite different from typical atomic clocks. We further present a detailed analysis of optimizing the sensitivity function and minimizing the Dick effect by interleaving lock. By optimizing the duty circle of laser pulses, average time during detection and optical intensity of laser beam, the Dick effect induced Allan deviation can be reduced to the level of 10-14.
|
Received: 29 August 2017
Revised: 14 November 2017
Accepted manuscript online:
|
PACS:
|
31.15.-p
|
(Calculations and mathematical techniques in atomic and molecular physics)
|
|
42.50.Gy
|
(Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)
|
|
95.55.Sh
|
(Auxiliary and recording instruments; clocks and frequency standards)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2016YFA0302101) and the Initiative Program of State Key Laboratory of Precision Measurement Technology and Instruments. |
Corresponding Authors:
Jian-Wei Zhang
E-mail: zhangjw@tsinghua.edu.cn
|
About author: 31.15.-p; 42.50.Gy; 95.55.Sh |
Cite this article:
Xiao-Lin Sun(孙晓林), Jian-Wei Zhang(张建伟), Peng-Fei Cheng(程鹏飞), Ya-Ni Zuo(左娅妮), Li-Jun Wang(王力军) Theoretical analysis of suppressing Dick effect in Ramsey-CPT atomic clock by interleaving lock 2018 Chin. Phys. B 27 023101
|
[1] |
Godone A, Micalizio S, Levi F and Calosso C 2006 Phys. Rev. A 74 043401
|
[2] |
Micalizio S, Calosso C E., Godone A and Levi F 2012 Metrologia 49 425
|
[3] |
Lin J, Deng J, Ma Y, He H and Wang Y 2012 Opt. Lett. 37 5036
|
[4] |
Danet J M, Kozlova O, Yun P, Guérande S and Clercq E D2014 Eur. Phys. J. Web Conf. 77 00017
|
[5] |
Yun P, Guérandel S and Clercq E D 2016 J. Appl. Phys. 119 244502
|
[6] |
Abdel Hafiz M and Boudot R 2015 J. Appl. Phys. 118 124903
|
[7] |
Dong G, Deng J, Lin J, Zhang S, Lin H and Wang Y 2017 Chin. Opt. Lett. 15 040201
|
[8] |
Li D, Shi D, Hu E, Wang Y, Tian L, Zhao J and Wang Z 2014 Appl. Phys. Express 7 112203
|
[9] |
Liu X, Mérolla J M, Guérandel S, Clercq E D and Boudot R 2013 Opt. Express 21 12451
|
[10] |
Taichenachev A V, Yudin V I, Velichansky V L, Kargapoltsev S V, Wynands R, Kitching J and Hollberg L 2004 JETP Lett. 80 236
|
[11] |
Zanon T, Guerandel S, Clercq E D, Holleville D, Dimarcq N and Clairon A 2005 Phys. Rev. Lett. 94 193002
|
[12] |
Jau Y Y, Miron E, Post A B, Kuzma N N and Happer W 2004 Phys. Rev. Lett. 93 160802
|
[13] |
Shah V, Knappe S, Hollberg L and Kitching J 2007 Opt. Lett. 32 1244
|
[14] |
Dick G J 1987 Proc. Precise Time and Time Interval, December 1-3, 1987, Redondo Beach, CA, p. 133
|
[15] |
Dick G J, Prestage J D, Greenhall C A and Maleki L 1990 Proc. 22nd Precise Time and Time Interval (PTTI) Applications and Planning Meeting, December 4-6, 1990, Vienna, VA, p. 487
|
[16] |
Audoin C, Santarelli G, Makdissi A and Clairon A 1998 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45 877
|
[17] |
Santarelli G, Audoin C, Makdissi A, Laurent P, Dick G J and Clairon A 1998 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45 887
|
[18] |
Greenhall C A 1998 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45 895
|
[19] |
Biedermann G W, Takase K, Wu X, Deslauriers L, Roy S and Kasevich M A 2013 Phys. Rev. Lett. 111 170802
|
[20] |
Wang L J 2014 Chin. Phys. Lett. 31 080601
|
[21] |
Zhang J W, Miao K and Wang L J 2015 Chin. Phys. Lett. 32 010601
|
[22] |
Chen Y H, She L, Wang M, Yang Z H, Liu H and Li J M 2016 Chin. Phys. B 25 120601
|
[23] |
Quessada A, Kovacich R P, Courtillot I, Clairon A, Santarelli G and Lemonde P 2003 J. Opt. B:Quantum Semiclass. Opt. 5 S150
|
[24] |
Westergaard P G, Lodewyck J and Lemonde P 2010 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57 623
|
[25] |
Schioppo M, Brown R C, McGrew W F, Hinkley N, Fasano R J, Beloy K, Yoon T H, Milani G, Nicolodi D, Sherman J A, Phillips N B, Oates C W and Ludlow A D 2017 Nat. Photon. 11 48
|
[26] |
Santarelli G, Laurent P, Lemonde P, Clairon A, Mann A G, Chang S, Luiten A N and Salomon C 1999 Phys. Rev. Lett. 82 4619
|
[27] |
Weyers S, Lipphardt B and Schnatz H 2009 Phys. Rev. A 79 031803
|
[28] |
Alzetta G, Gozzini A, Moi L and Orriols G 1976 Nuovo Cim. 36 5
|
[29] |
Vanier J 2005 Appl. Phys. B 81 421
|
[30] |
Shah V and Kitching J 2010 Adv. At. Mol. Opt. Phys. 59 21
|
[31] |
Guérandel S, Zanon T, Castagna N, Dahes F, Clercq E D, Dimarcq N and Clairon A 2007 IEEE Trans. Instrum. Meas. 56 383
|
[32] |
Danet J M, Lours M, Guérandel S and Clercq E D 2014 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 61 567
|
[33] |
Sun X L, Zhang J W, Cheng P F, Xu C, Zhao L and Wang L J 2016 Opt. Express 24 4532
|
[34] |
Cheng P F, Sun X L, Xu C, Gao C, Zhao L, Zhang J W and Wang L J 2016 Frequency Control Symposium (IFCS), May 9-12, 2016, New Orleans, USA, p. 1
|
[35] |
Yang J, Liu G B and Gu S H 2012 Acta Phys. Sin 61 043202(in Chinese)
|
[36] |
Zhen H H and Dong S D 2016 Chin. Phys. B 25 124201
|
[37] |
Zhou M and Xu X Y 2016 Physics 45 431(in Chinese)
|
[38] |
Shi F, Cui Y S, Zhang Z W, Zhao H, Wang N R, Zhang S K, Yang R F, Nian F and Feng K M 2014 Chin. Opt. Lett. 12 S22205
|
[39] |
Wang X M, Meng Y L, Wang Y N, Wan J Y, Yu M Y, Wang X, Xiao L, Li T, Cheng H D and Liu L 2017 Chin. Phys. Lett. 34 063702
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|