CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Two types of ground-state bright solitons in a coupled harmonically trapped pseudo-spin polarization Bose–Einstein condensate |
T F Xu(徐天赋) |
Hebei Key Laboratory of Microstructural Material Physics, School of Science, Yanshan University, Qinhuangdao 066004, China |
|
|
Abstract We study two types of bright solitons in an attractive Bose-Einstein condensate with a spin-orbit interaction. By solving the coupled nonlinear Schrödinger equations with the variational method and the imaginary time evolution method, fundamental properties of solitons are carefully investigated in different parameter regimes. It is shown that the detuning between the Raman beam and energy states of the atoms dominates the ground state type and spin polarization strength. The soliton dynamics is also studied for various moving velocities for zero and nonzero detuning cases. We find that the shape of individual component solitons can be maintained when the moving speed of solitons is low and the detuning is small in the coupled harmonically trapped pseudo-spin polarization Bose-Einstein condensate.
|
Received: 07 August 2017
Accepted manuscript online:
|
PACS:
|
67.85.-d
|
(Ultracold gases, trapped gases)
|
|
03.75.Lm
|
(Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11304270 and 11475144). |
Corresponding Authors:
T F Xu
E-mail: tfxu@ysu.edu.cn
|
Cite this article:
T F Xu(徐天赋) Two types of ground-state bright solitons in a coupled harmonically trapped pseudo-spin polarization Bose–Einstein condensate 2018 Chin. Phys. B 27 016702
|
[1] |
Xiao D, Chang M C and Niu Q 2010 Rev. Mod. Phys. 82 1959
|
[2] |
Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
|
[3] |
Žutić I, Fabian J and Sarma S D 2004 Rev. Mod. Phys. 76 323
|
[4] |
Zhang Y P, Mao L and Zhang C W 2012 Phys. Rev. Lett. 108 035302
|
[5] |
Lin Y J, Jiménez-García K and Spielman I B 2011 Nature 471 83
|
[6] |
Lin Y J, Compton R L, Perry A R, Phillips W D, Porto J V and Spielman I B 2009 Phys. Rev. Lett. 102 130401
|
[7] |
Lin Y J, Compton R L, Jimenez-Garca K, Porto J V and Spielman I B 2009 Nature 462 628
|
[8] |
Burger S, Bongs K, Dettmer S, Ertmer W, Sengstock K, Sanpera A, Shlyapnikov G V and Lewenstein M 1999 Phys. Rev. Lett. 83 5198
|
[9] |
Khaykovich L, Schreck F, Ferrari G, Bourdel T, Cubizolles J, Carr L D, Castin Y and Salomon C 2002 Science 296 1290
|
[10] |
Kevrekidis P G and Frantzeskakis D J 2016 Rev. Phys. 1 140
|
[11] |
Wu C 2009 Mod. Phys. Lett. B 23 1
|
[12] |
Zhu Q, Zhang C and Wu B 2013 Europhys. Lett. 100 50003
|
[13] |
Wu C, Mondragon-Shem I and Zhou X F 2011 Chin. Phys. Lett. 28097102
|
[14] |
Xu Y, Zhang Y and Wu B 2013 Phys. Rev. A 87 013614
|
[15] |
Gautam S and Adhikari S K 2015 Phys. Rev. A 91 063617
|
[16] |
Li Y E and Xue J K 2016 Chin. Phys. Lett. 33 100502
|
[17] |
Liu Y and Zhang S Y 2016 Chin. Phys. B 25 090304
|
[18] |
Öhberg P and Santos L 2001 Phys. Rev. Lett. 86 2918
|
[19] |
Achilleos V, Stockhofe J, Kevrekidis P G, Frantzeskakis D J and Schmelcher P 2013 Europhys. Lett. 103 20002
|
[20] |
Kevrekidis P G, Susanto H, Carretero-González R, Malomed B A and Frantzeskakis D J 2005 Phys. Rev. E 72 066604
|
[21] |
Becker C, Stellmer S, Soltan-Panahi P, Dörscher S, Baumert M, Richter E M, Kronjäger J, Bongs K and Sengstock K 2008 Nat. Phys. 4 496
|
[22] |
Hamner C, Chang J J, Engels P and Hoefer M A 2011 Phys. Rev. Lett. 106 065302
|
[23] |
Pérez-García V M and Beitia J B 2005 Phys. Rev. A 72 033620
|
[24] |
Salasnich L and Malomed B A 2006 Phys. Rev. A 74 053610
|
[25] |
Kartashov Y V, Konotop V V and Abdullaev F K 2013 Phys. Rev. Lett. 111 060402
|
[26] |
Zhang Y, Xu Y and Busch T 2015 Phys. Rev. A 91 043629
|
[27] |
Sakaguchi H, Li B and Malomed B A 2014 Phys. Rev. E 89 032920
|
[28] |
Chiofalo M L, Succi S and Tosi M P 2000 Phys. Rev. E 62 7438
|
[29] |
Celik C and Duman M 2012 J. Comput. Phys. 231 1743
|
[30] |
Zhai H 2015 Rep. Prog. Phys. 78 026001
|
[31] |
Achilleos V, Frantzeskakis D J, Kevrekidis P G and Pelinovsky D E 2013 Phys. Rev. Lett. 110 264101
|
[32] |
Xu Y, Zhang Y and Zhang C 2015 Phys. Rev. A 92 013633
|
[33] |
Zhou Z, Zhong H H, Zhu B, Xiao F X, Zhu K and Tan J T 2016 Chin. Phys. Lett. 33 110301
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|