Special Issue:
SPECIAL TOPIC — New generation solar cells
|
SPECIAL TOPIC—New generation solar cells |
Prev
Next
|
|
|
Regulation of Zn/Sn ratio in kesterite absorbers to boost 10% efficiency of Cu2ZnSn(S, Se)4 solar cells |
Xue Min(闵雪)1,2, Jiangjian Shi(石将建)1,2, Linbao Guo(郭林宝)1,2, Qing Yu(于晴)1,2, Pengpeng Zhang(张朋朋)1,2, Qingwen Tian(田庆文)3, Dongmei Li(李冬梅)1,2, Yanhong Luo(罗艳红)1,2, Huijue Wu(吴会觉)1,2, Qingbo Meng(孟庆波)1,2, Sixin Wu(武四新)3 |
1 Key Laboratory for Renewable Energy(CAS), Beijing Key Laboratory for New Energy Materials and Devices, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; 3 The Key Laboratory for Special Functional Materials of MOE, Henan University, Kaifeng 475004, China |
|
|
Abstract The Zn/Sn ratio in Cu2ZnSn(S, Se)4 (CZTSSe) films has been regulated to control the composition-related phase, defect, and photoelectric properties for high performance kesterite solar cells. It is found that the increase in the Zn/Sn ratio can slightly narrow the energy band gap to extend the light absorption range and improve the photocurrent. Optimal Zn/Sn ratio of 1.39 in CZTSSe film is obtained with the least secondary phase, the lowest defect density, and the longest charge recombination lifetime. Up to 10.1% photoelectric conversion efficiency has been achieved by this composition regulation.
|
Received: 17 October 2017
Revised: 13 November 2017
Accepted manuscript online:
|
PACS:
|
64.75.St
|
(Phase separation and segregation in thin films)
|
|
72.20.Jv
|
(Charge carriers: generation, recombination, lifetime, and trapping)
|
|
78.20.-e
|
(Optical properties of bulk materials and thin films)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51627803, 51402348, 51421002, 51372270, and 51372272) and the Knowledge Innovation Program of the Chinese Academy of Sciences. |
Corresponding Authors:
Qingbo Meng, Sixin Wu
E-mail: qbmeng@iphy.ac.cn;wusixin@henu.edu.cn
|
Cite this article:
Xue Min(闵雪), Jiangjian Shi(石将建), Linbao Guo(郭林宝), Qing Yu(于晴), Pengpeng Zhang(张朋朋), Qingwen Tian(田庆文), Dongmei Li(李冬梅), Yanhong Luo(罗艳红), Huijue Wu(吴会觉), Qingbo Meng(孟庆波), Sixin Wu(武四新) Regulation of Zn/Sn ratio in kesterite absorbers to boost 10% efficiency of Cu2ZnSn(S, Se)4 solar cells 2018 Chin. Phys. B 27 016402
|
[1] |
Chen S Y, Walsh A, Gong X G and Wei S H 2013 Adv. Mater. 25 1522
|
[2] |
Polizzotti A, Repins I L, Noufi R, Wei S H and Mitzi D B 2013 Energy Environ. Sci. 6 3171
|
[3] |
Zhou H P, Hsu W C, Duan H S, Bob B, Yang W B, Song T B, Hsu C J and Yang Y 2013 Energy Environ. Sci. 6 2822
|
[4] |
Yan C, Sun K W, Huang J L, Johnston S, Liu F Y, Veettil B P, Sun K, Pu A, Zhou F Z, Stride J A, Green M A and Hao X J 2017 ACS Energy Lett. 2 930
|
[5] |
Yang K J, Son D H, Sung S J, Sim J H, Kim Y I, Park S N, Jeon D H, Kim J S, Hwang D K, Jeon C W, Nam D, Cheong H, Kang J K and Kim D H 2016 J. Mater. Chem. A 4 10151
|
[6] |
Haass S G, Diethelm M, Werner M, Bissig B, Romanyuk Y E and Tiwari A N 2015 Adv. Energy Mater. 5 1500712
|
[7] |
Ahmed S, Reuter K B, Gunawan O, Guo L, Romankiw L T and Deligianni H 2012 Adv. Energy Mater. 2 253
|
[8] |
Gershon T, Shin B, Bojarczuk N, Hopstaken M, Mitzi D B and Guha S 2015 Adv. Energy Mater. 5 1400849
|
[9] |
Wang W, Winkler M T, Gunawan O, Gokmen T, Todorov T K, Zhu Y and Mitzi D B 2014 Adv. Energy Mater. 4 1301465
|
[10] |
Guo Q J, Ford G M, Yang W C, Walker B C, Stach E A, Hillhouse H W and Agrawal R 2010 J. Am. Chem. Soc. 132 17384
|
[11] |
Xin H, Vorpahl S M, Collord A D, Braly I L, Uhl A R, Krueger B W, Ginger D S and Hillhouse H W 2015 Phys. Chem. Chem. Phys. 17 23859
|
[12] |
Tian Q W, Wang G, Zhao W G, Chen Y Y, Yang Y C, Huang L J and Pan D C 2014 Chem. Mater. 26 3098
|
[13] |
Guo J, Zhou W H, Pei Y L, Tian Q W, Kou D X, Zhou Z J, Meng Y N and Wu S X 2016 Sol. Energy Mater. Sol. Cells 155 209
|
[14] |
Kumar M, Dubey A, Adhikari N, Venkatesan S and Qiao Q 2015 Energy Environ. Sci. 8 3134
|
[15] |
Shin D, Saparov B and Mitzi D B 2017 Adv. Energy Mater. 6 1602366
|
[16] |
Katagiri H, Jimbo K, Tahara M, Araki H and Oishi K 2009 MRS Proceedings 1165 M04-01
|
[17] |
Tanaka K, Fukui Y, Moritake N and Uchiki H 2011 Sol. Energy Mater. Sol. Cells 95 838
|
[18] |
Chawla V and Clemens B 2012 Photovoltaic Specialists Conference (PVSC), 38$th IEEE, June 3-8, 2012, Austin, TX, USA, p. 002990
|
[19] |
Malerba C, Biccari F, Ricardo C L A, Valentini M, Chierchia R, Müller M, Santoni A, Esposito E, Mangiapane P and Scardi P 2014 J. Alloys Compd. 582 528
|
[20] |
Li J J, Wang H X, Luo M, Tang J, Chen C, Liu W, Liu F F, Sun Y, Han J B and Zhang Y 2016 Sol. Energy Mater. Sol.Cells 149 242
|
[21] |
Tao J H, Chen L L, Cao H Y, Zhang C J, Liu J F, Zhang Y B, Huang L, Jiang J C, Yang P X and Chu J H 2016 J. Mater. Chem A 4 3798
|
[22] |
Larramona G, Levcenko S, Bourdais S, Jacob A, Choné C, Delatouche B, Moisan C, Just J, Unold T and Dennler G 2015 Adv. Energy Mater. 5 1501404
|
[23] |
Shi J J, Xu X, Zhang H Y, Luo Y H, Li D M and Meng Q B 2015 Appl. Phys. Lett. 107 163901
|
[24] |
Shi J J, Xu X, Li D M and Meng Q B 2015 Small 11 2472
|
[25] |
Redinger A, Berg D M, Dale P J and Siebentritt S 2011 J. Am. Chem. Soc. 133 3320
|
[26] |
Li J J, Zhang Y, Zhao W, Nam D, Cheong H, Wu L, Zhou Z Q and Sun Y 2015 Adv. Energy Mater. 5 1402178
|
[27] |
Fan F J, Wu L and Yu S H 2014 Energy Environ. Sci. 7 190
|
[28] |
He J, Sun L, Chen S Y, Chen Y, Yang P X and Chu J H 2012 J. Alloys Compd. 511 129
|
[29] |
Just J, Sutter-Fella C M, Lützenkirchen-Hecht D, Frahm R, Schorr S and Unold T 2016 Phys. Chem. Chem. Phys. 18 15988
|
[30] |
Li J J, Wang H X, Wu L, Chen C, Zhou Z Q, Liu F F, Sun Y, Han J B and Zhang Y 2016 ACS Appl. Mater. Interfaces 8 10283
|
[31] |
Fella C M, Uhl A R, Romanyuk Y E and Tiwari A N 2012 Phys. Status Solidi 209 1043
|
[32] |
Altamura G and Vidal J 2016 Chem. Mater. 28 3540
|
[33] |
Fairbrother A, Fontané X, Izquierdo-Roca V, Placidi M, Sylla D, Espindola-Rodriguez M, López-Mariño S, Pulgarín F A, Vigil-Galán O, Pérez-Rodríguez A and Saucedo E 2014 Prog. Photovoltaics 22 479
|
[34] |
Gershon T, Lee Y S, Antunez P, Mankad R, Singh S, Bishop D, Gunawan O, Hopstaken M and Haight R 2016 Adv. Energy Mater. 6 1502468
|
[35] |
Fu J, Tian Q W, Zhou Z J, Kou D X, Meng Y N, Zhou W H and Wu S X 2016 Chem. Mater. 28 5821
|
[36] |
Yu J L, Zheng Z M, Dong L M, Cheng S Y, Lai Y F, Zheng Q, Zhou H F, Jia H J, Zhang H 2017 Chin. Phys. B 26 046802
|
[37] |
Barnes P 2002 Charact. Mater. 579
|
[38] |
Heath J T, Cohen J D and Shafarman W N 2004 J. Appl. Phys. 95 1000
|
[39] |
Shi J J, Li D M, Luo Y H, Wu H J and Meng Q B 2016 Rev. Sci. Instrum. 87 123107
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|