Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(6): 068701    DOI: 10.1088/1674-1056/24/6/068701
RAPID COMMUNICATION Prev   Next  

Curvature-induced lipid segregation

Zheng Bin (郑斌)a b, Meng Qing-Tian (孟庆田)a, Robin L. B. Selingerc, Jonathan V. Selingerc, Ye Fang-Fu (叶方富)b
a College of Physics and Electronics, Shandong Normal University, Jinan 250014, China;
b Beijing National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics of Chinese Academy of Sciences, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
c Liquid Crystal Institute, Kent State University, Kent, OH 44242, USA
Abstract  

We investigate how an externally imposed curvature influences lipid segregation on two-phase-coexistent membranes. We show that the bending-modulus contrast of the two phases and the curvature act together to yield a reduced effective line tension. On largely curved membranes, a state of multiple domains (or rafts) forms due to a mechanism analogous to that causing magnetic-vortex formation in type-II superconductors. We determine the criterion for such a multi-domain state to occur; we then calculate respectively the size of the domains formed on cylindrically and spherically curved membranes.

Keywords:  curvature      phase separation      lipid membrane      rafts  
Received:  03 April 2015      Revised:  08 April 2015      Accepted manuscript online: 
PACS:  87.16.dt (Structure, static correlations, domains, and rafts)  
  64.75.St (Phase separation and segregation in thin films)  
  61.30.Dk (Continuum models and theories of liquid crystal structure)  
Corresponding Authors:  Ye Fang-Fu     E-mail:  fye@iphy.ac.cn
About author:  87.16.dt; 64.75.St; 61.30.Dk

Cite this article: 

Zheng Bin (郑斌), Meng Qing-Tian (孟庆田), Robin L. B. Selinger, Jonathan V. Selinger, Ye Fang-Fu (叶方富) Curvature-induced lipid segregation 2015 Chin. Phys. B 24 068701

[1] van Meer G and Sprong H 2004 Curr. Opin. Cell Biol. 16 373
[2] van Meer G, Voelker D R and Feigenson G W 2008 Nat. Rev. Mol. Cell Biol. 9 112
[3] Simons K and Ikonen E 1997 Nature 387 569
[4] Veatch S L and Keller S L 2003 Biophys. J. 85 3074
[5] Baumgart T, Hess S T and Webb W W 2003 Nature 425 821
[6] Baumgart T, Das S, Webb W W and Jenkins J T 2005 Biophys. J. 89 1067
[7] Yoon T Y, Jeong C, Lee S W, Kim J H, Choi M C, Kim S J, Kim M W and Lee S D 2006 Nat. Mater. 5 281
[8] Parthasarathy R, Yu C and Groves J T 2006 Langmuir 22 5095
[9] Parthasarathy R and Groves J T 2007 Soft Matter 3 24
[10] Rozycki B, Weikl T R and Lipowsky R 2008 Phys. Rev. Lett. 100 098103
[11] Jiang H and Powers T R 2008 Phys. Rev. Lett. 101 018103
[12] Liang Q and Ma Y Q 2009 J. Phys. Chem. B 113 8049
[13] Sorrea B, Callan-Jonesa A, Mannevilleb J B, Nassoya P, Joannya J F, Prosta J, Goudb B and Bassereaua P 2009 Proc. Natl. Acad. Sci. USA 106 5622
[14] Heinricha M, Tiana A, Espositoa C and Baumgart T 2010 Proc. Natl. Acad. Sci. USA 107 7208
[15] Stögbauer T, Hennig M and Radler J O 2010 Biophys. Rev. Lett. 5 153
[16] Hoopes M I, Faller R and Longo M L 2011 Langmuir 27 2783
[17] Risselada H J, Marrink S J and Muller M 2011 Phys. Rev. Lett. 106 148102
[18] Jiang H 2012 Phys. Rev. Lett. 109 198101
[19] McMahon H T and Gallop J L 2005 Nature 438 590
[20] Ou-Yang Z C, Liu J X and Xie Y Z 1999 Geometric Methods in the Elastic Theory of Membranes in Liquid Crystal Phases (Singapore: World Scientific)
[21] Hamm M and Kozlov M M 1998 Eur. Phys. J. B 6 519
[22] Hamm M and Kozlov M M 2000 Eur. Phys. J. E 3 323
[23] Benvegnu D J and McConnell H M 2008 Biophys. J. 95 236
[25] Brewster R, Pincus P A and Safran S A 2009 Biophys. J. 97 1087
[26] Ursell T S, Klug W S and Phillips R 2009 Proc. Natl. Acad. Sci. USA 106 13301
[27] Tinkham M 1996 Introduction to Superconductivity (New York: McGraw-Hill)
[1] Numerical simulation of a truncated cladding negative curvature fiber sensor based on the surface plasmon resonance effect
Zhichao Zhang(张志超), Jinhui Yuan(苑金辉), Shi Qiu(邱石), Guiyao Zhou(周桂耀), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), and Xinzhu Sang(桑新柱). Chin. Phys. B, 2023, 32(3): 034208.
[2] Investigating the characteristic delay time in the leader-follower behavior in children single-file movement
Shu-Qi Xue(薛书琦), Nirajan Shiwakoti, Xiao-Meng Shi(施晓蒙), and Yao Xiao(肖尧). Chin. Phys. B, 2023, 32(2): 028901.
[3] Single-polarization single-mode hollow-core negative curvature fiber with nested U-type cladding elements
Qi-Wei Wang(王启伟), Shi Qiu(邱石), Jin-Hui Yuan(苑金辉), Gui-Yao Zhou(周桂耀), Chang-Ming Xia(夏长明), Yu-Wei Qu(屈玉玮), Xian Zhou(周娴), Bin-Bin Yan(颜玢玢), Qiang Wu(吴强), Kui-Ru Wang(王葵如), Xin-Zhu Sang(桑新柱), and Chong-Xiu Yu(余重秀). Chin. Phys. B, 2022, 31(6): 064213.
[4] Nanoscale structural investigation of Zn1-xMgxO alloy films on polar and nonpolar ZnO substrates with different Mg contents
Xin Liang(梁信), Hua Zhou(周华), Hui-Qiong Wang(王惠琼), Lihua Zhang(张丽华), Kim Kisslinger, and Junyong Kang(康俊勇). Chin. Phys. B, 2021, 30(9): 096107.
[5] Strain-dependent resistance and giant gauge factor in monolayer WSe2
Mao-Sen Qin(秦茂森), Xing-Guo Ye(叶兴国), Peng-Fei Zhu(朱鹏飞), Wen-Zheng Xu(徐文正), Jing Liang(梁晶), Kaihui Liu(刘开辉), and Zhi-Min Liao(廖志敏). Chin. Phys. B, 2021, 30(9): 097203.
[6] Resistance fluctuations in superconducting KxFe2-ySe2 single crystals studied by low-frequency noise spectroscopy
Hai Zi(子海), Yuan Yao(姚湲), Ming-Chong He(何明冲), Di Ke(可迪), Hong-Xing Zhan(詹红星), Yu-Qing Zhao(赵宇清), Hai-Hu Wen(闻海虎), and Cong Ren(任聪). Chin. Phys. B, 2021, 30(4): 047402.
[7] Proton loss of inner radiation belt during geomagnetic storm of 2018 based on CSES satellite observation
Zhen-Xia Zhang(张振霞), Xu-Hui Shen(申旭辉), Xin-Qiao Li(李新乔), and Yong-Fu Wang(王永福). Chin. Phys. B, 2021, 30(12): 129401.
[8] Self-assembled vesicle-colloid hybrid swimmers: Non-reciprocal strokes with reciprocal actuation
Jaime Agudo-Canalejo, Babak Nasouri. Chin. Phys. B, 2020, 29(6): 064704.
[9] Phase separation and super diffusion of binary mixtures ofactive and passive particles
Yan Wang(王艳), Zhuanglin Shen(谌庄琳), Yiqi Xia(夏益祺), Guoqiang Feng(冯国强), Wende Tian(田文得). Chin. Phys. B, 2020, 29(5): 053103.
[10] Effect of C60 nanoparticles on elasticity of small unilamellar vesicles composed of DPPC bilayers
Tanlin Wei(魏坦琳), Lei Zhang(张蕾), Yong Zhang(张勇). Chin. Phys. B, 2020, 29(4): 048702.
[11] Tail-structure regulated phase behaviors of a lipid bilayer
Wenwen Li(李文文), Zhao Lin(林召), Bing Yuan(元冰), and Kai Yang(杨恺)\ccclink. Chin. Phys. B, 2020, 29(12): 128701.
[12] A note on “Lattice soliton equation hierarchy and associated properties”
Xi-Xiang Xu(徐西祥), Min Guo(郭敏). Chin. Phys. B, 2019, 28(1): 010202.
[13] Microdroplet targeting induced by substrate curvature
Hongguang Zhang(张红光), Zhenjiang Guo(郭振江), Shan Chen(陈珊), Bo Zhang(张博), Xianren Zhang(张现仁). Chin. Phys. B, 2018, 27(9): 096801.
[14] First integrals of the axisymmetric shape equation of lipid membranes
Yi-Heng Zhang(张一恒), Zachary McDargh, Zhan-Chun Tu(涂展春). Chin. Phys. B, 2018, 27(3): 038704.
[15] Monitoring the formation of oil-water emulsions with a fast spatially resolved NMR spectroscopy method
Meng-Ting You(游梦婷), Zhi-Liang Wei(韦芝良), Jian Yang(杨健), Xiao-Hong Cui(崔晓红), Zhong Chen(陈忠). Chin. Phys. B, 2018, 27(2): 028201.
No Suggested Reading articles found!