Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(1): 010305    DOI: 10.1088/1674-1056/27/1/010305
GENERAL Prev   Next  

Improved quantum randomness amplification with finite number of untrusted devices based on a novel extractor

Ming-Feng Xu(徐明峰), Wei Pan(潘炜), Lian-Shan Yan(闫连山), Bin Luo(罗斌), Xi-Hua Zou(邹喜华), Peng-Hua Mu(穆鹏华), Li-Yue Zhang(张力月)
Center for Information Photonics and Communications, Southwest Jiaotong University, Chengdu 611756, China
Abstract  Quantum randomness amplification protocols have increasingly attracted attention for their fantastic ability to amplify weak randomness to almost ideal randomness by utilizing quantum systems. Recently, a realistic noise-tolerant randomness amplification protocol using a finite number of untrusted devices was proposed. The protocol has the composable security against non-signalling eavesdroppers and could produce a single bit of randomness from weak randomness sources, which is certified by the violation of certain Bell inequalities. However, the protocol has a non-ignorable limitation on the min-entropy of independent sources. In this paper, we further develop the randomness amplification method and present a novel quantum randomness amplification protocol based on an explicit non-malleable two independent-source randomness extractor, which could remarkably reduce the above-mentioned specific limitation. Moreover, the composable security of our improved protocol is also proposed. Our results could significantly expand the application range for practical quantum randomness amplification, and provide a new insight on the practical design method for randomness extraction.
Keywords:  quantum random number generation      quantum randomness amplification      quantum key distribution  
Received:  21 August 2017      Revised:  07 October 2017      Accepted manuscript online: 
PACS:  03.67.-a (Quantum information)  
  03.67.Hk (Quantum communication)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61775185).
Corresponding Authors:  Ming-Feng Xu     E-mail:  xmfswjtu@126.com

Cite this article: 

Ming-Feng Xu(徐明峰), Wei Pan(潘炜), Lian-Shan Yan(闫连山), Bin Luo(罗斌), Xi-Hua Zou(邹喜华), Peng-Hua Mu(穆鹏华), Li-Yue Zhang(张力月) Improved quantum randomness amplification with finite number of untrusted devices based on a novel extractor 2018 Chin. Phys. B 27 010305

[1] Herrero-Collantes M and Garcia-Escartin J C 2017 Rev. Mod. Phys. 89 015004
[2] Quan D X, Zhu C H, Liu S Q and Pei C X 2015 Chin. Phys. B 24 050309
[3] Ma H Q, Zhu W, Wei K J, Li R X and Liu H W 2016 Chin. Phys. B 25 050304
[4] Li Y M, Wang X Y, Bai Z L, Liu W Y, Yang S S and Peng K C 2017 Chin. Phys. B 26 040303
[5] Bucci M, Germani L, Luzzi R, Trifiletti and Varanonuovo M 2003 IEEE Tran. Comput. 52 403
[6] Schmidt H 1970 J. Appl. Phys. 41 462
[7] Uchida A, Amano K, Inoue M, Hirano K, Naito S, Someya H, Oowada I, Kurashige T, Shiki M, Yoshimori S, Yoshimura K and Davis P 2016 Nat. Photon. 2 728
[8] Acin A and Masanes L 2016 Nature 540 213
[9] Colbeck R and Renner R 2012 Nat. Phys. 8 450
[10] Pironio S, Acin A, Massar S, Boyer de la Giroday A, Matsukevich D N, Maunz P, Olmschenk S, Hayes D, Luo L, Manning T A and Monroe C 2010 Nature 464 1021
[11] Santha M and Vazirani U V 1984 IEEE 25th Annual Symposium on Foundations of Computer Science 434
[12] Brandao F G S L, Ramanathan R, Grudka A, Horodecki K, Horodecki M, Horodecki P, Szarek T and Wojewodka H 2016 Nat. Commun. 7 11345
[13] Gallego R, Masanes L, de la Torre G, Dhara C, Aolita L and Acin A 2013 Nat. Commun. 4 2654
[14] Grudka A, Horodecki K, Horodecki M, Horodecki P, Pawlowski M and Ramanathan R 2014 Phys. Rev. A 90 032322
[15] Mironowicz P, Gallego R and Pawlowski M 2015 Phys. Rev. A 91 032317
[16] Ramanathan R, Brandao F G S L, Horodecki K, Horodecki M, Horodecki P and Wojewodka H 2016 Phys. Rev. Lett. 117 230501
[17] Li X 2016 arXiv:1608.00127
[18] Ghne O, Tth G, Hyllus P and Briegel H 2005 Phys. Rev. Lett. 95 120405
[19] Cao Z, Zhou H Y, Yuan X and Ma X F 2016 Phys. Rev. X 6 011020
[20] Marangon D G, Vallone G and Villoresi P 2017 Phys. Rev. Lett. 118 060503
[1] Security of the traditional quantum key distribution protocolswith finite-key lengths
Bao Feng(冯宝), Hai-Dong Huang(黄海东), Yu-Xiang Bian(卞宇翔), Wei Jia(贾玮), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2023, 32(3): 030307.
[2] Performance of phase-matching quantum key distribution based on wavelength division multiplexing technology
Haiqiang Ma(马海强), Yanxin Han(韩雁鑫), Tianqi Dou(窦天琦), and Pengyun Li(李鹏云). Chin. Phys. B, 2023, 32(2): 020304.
[3] Temperature characterizations of silica asymmetric Mach-Zehnder interferometer chip for quantum key distribution
Dan Wu(吴丹), Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-Shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Hong-Jie Wang(王红杰), Jian-Guang Li(李建光), Xiao-Jie Yin(尹小杰), Yuan-Da Wu(吴远大), Jun-Ming An(安俊明), and Ze-Guo Song(宋泽国). Chin. Phys. B, 2023, 32(1): 010305.
[4] Improvement of a continuous-variable measurement-device-independent quantum key distribution system via quantum scissors
Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), Zhe-Kun Zhang(张哲坤), Jin Qi(齐锦), and Chen He(贺晨). Chin. Phys. B, 2022, 31(9): 090304.
[5] Practical security analysis of continuous-variable quantum key distribution with an unbalanced heterodyne detector
Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), and Chen He(贺晨). Chin. Phys. B, 2022, 31(7): 070303.
[6] Quantum key distribution transmitter chip based on hybrid-integration of silica and lithium niobates
Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Dan Wu (吴丹), and Jun-Ming An (安俊明). Chin. Phys. B, 2022, 31(6): 064212.
[7] Short-wave infrared continuous-variable quantum key distribution over satellite-to-submarine channels
Qingquan Peng(彭清泉), Qin Liao(廖骎), Hai Zhong(钟海), Junkai Hu(胡峻凯), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(6): 060306.
[8] Phase-matching quantum key distribution with light source monitoring
Wen-Ting Li(李文婷), Le Wang(王乐), Wei Li(李威), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2022, 31(5): 050310.
[9] Parameter estimation of continuous variable quantum key distribution system via artificial neural networks
Hao Luo(罗浩), Yi-Jun Wang(王一军), Wei Ye(叶炜), Hai Zhong(钟海), Yi-Yu Mao(毛宜钰), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(2): 020306.
[10] Detecting the possibility of a type of photon number splitting attack in decoy-state quantum key distribution
Xiao-Ming Chen(陈小明), Lei Chen(陈雷), and Ya-Long Yan(阎亚龙). Chin. Phys. B, 2022, 31(12): 120304.
[11] Realization of simultaneous balanced multi-outputs for multi-protocols QKD decoding based onsilica-based planar lightwave circuit
Jin You(游金), Yue Wang(王玥), and Jun-Ming An(安俊明). Chin. Phys. B, 2021, 30(8): 080302.
[12] Continuous-variable quantum key distribution based on photon addition operation
Xiao-Ting Chen(陈小婷), Lu-Ping Zhang(张露萍), Shou-Kang Chang(常守康), Huan Zhang(张欢), and Li-Yun Hu(胡利云). Chin. Phys. B, 2021, 30(6): 060304.
[13] Practical decoy-state BB84 quantum key distribution with quantum memory
Xian-Ke Li(李咸柯), Xiao-Qian Song(宋小谦), Qi-Wei Guo(郭其伟), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2021, 30(6): 060305.
[14] Three-party reference frame independent quantum key distribution protocol
Comfort Sekga and Mhlambululi Mafu. Chin. Phys. B, 2021, 30(12): 120301.
[15] Reference-frame-independent quantum key distribution of wavelength division multiplexing with multiple quantum channels
Zhongqi Sun(孙钟齐), Yanxin Han(韩雁鑫), Tianqi Dou(窦天琦), Jipeng Wang(王吉鹏), Zhenhua Li(李振华), Fen Zhou(周芬), Yuqing Huang(黄雨晴), and Haiqiang Ma(马海强). Chin. Phys. B, 2021, 30(11): 110303.
No Suggested Reading articles found!