Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(1): 017301    DOI: 10.1088/1674-1056/27/1/017301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Optical interaction between one-dimensional fiber photonic crystal microcavity and gold nanorod

Yang Yu(于洋)1,2, Ting-Hui Xiao(肖廷辉)1, Zhi-Yuan Li(李志远)1,3
1 Laboratory of Optical Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China;
3 School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510640, China
Abstract  

Localized surface plasmon resonance (LSPR) has demonstrated its promising capability for biochemical sensing and surface-enhanced spectroscopy applications. However, harnessing LSPR for remote sensing and spectroscopy applications remains a challenge due to the difficulty in realizing a configuration compatible with the current optical communication system. Here, we propose and theoretically investigate a hybrid plasmonic-photonic device comprised of a single gold nanorod and an optical fiber-based one-dimensional photonic crystal microcavity, which can be integrated with the optical communication system without insertion loss. The line width of the LSPR, as a crucial indicator that determines the performances for various applications, is narrowed by the cavity-plasmon coupling in our device. Our device provides a promising alternative to exploit the LSPR for high-performance remote sensing and spectroscopy applications.

Keywords:  photonic microcavtiy      localized surface plasmon resonance  
Received:  10 August 2017      Revised:  26 September 2017      Accepted manuscript online: 
PACS:  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  42.82.Fv (Hybrid systems)  
  52.65.Ww (Hybrid methods)  
  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
Fund: 

Project supported by the National Basic Research Program of China (Grant No. 2013CB632704) and the National Natural Science Foundation of China (Grant No. 11434017).

Corresponding Authors:  Zhi-Yuan Li     E-mail:  phzyli@scut.edu.cn

Cite this article: 

Yang Yu(于洋), Ting-Hui Xiao(肖廷辉), Zhi-Yuan Li(李志远) Optical interaction between one-dimensional fiber photonic crystal microcavity and gold nanorod 2018 Chin. Phys. B 27 017301

[1] Eustis S and El-Sayed M A 2006 Chem. Soc. Rev. 35 209
[2] Willets K A and Van Duyne 2007 Rev. Phys. Chem. 58 267
[3] Bohren C F and Huffman D R 1983 Absorption and Scattering of Light by Small Particles (New York: Wiley) p. 3
[4] Wang P, Wang Y, Yang Z, Guo X, Lin X, Yu X C, Xiao Y F, Fang W, Zhang L, Lu G, Gong Q and Tong L 2015 Nano Lett. 15 7581
[5] Kreibig U and Vollmer M 1995 Optical Properties of Metal Clusters (Berlin: Springer) pp. 1-12
[6] Sönichsen C, Franzl T, Wilk T, von Plessen G and Feldmann J 2002 Phys. Rev. Lett. 88 077402
[7] Fang Z and Zhu X 2013 Adv. Mater. 25 3840
[8] Anker J N, Hall W P, Lyandres O, Shah N C, Zhao J and Van Duyne 2008 Nat. Mater. 7 442
[9] Mayer K M and Hafner J H 2011 Chem. Rev. 111 3828
[10] Yonzon C R, Stuart D A, Zhang X, McFarland A D, Haynes C L and Van Duyne R P 2005 Talanta 67 438
[11] Haes A J, Chang L, Klein W L and Van Duyne R P 2005 J. Am. Chem. Soc. 127 2264
[12] Dahlin A B, Tegenfeldt J O and Hook F 2006 Anal. Chem. 78 4416
[13] McFarland A D and Van Duyne R P 2003 Nano Lett. 3 1057
[14] Raschke G, Kowarik S, Franzl T, Sonnichsen C, Klar T A and Feldmann J 2003 Nano Lett. 3 935
[15] Elghanian R, Storhoff J J, Mucic R C, Letsinger R L and Mirkin C A 1997 Science 277 1078
[16] Mühlschlegel P, Eisler H J, Martin O J F, Hecht B and Pohl D W 2005 Science 308 1607
[17] Jeanmaire D L and Van Duyne R P 1997 J. Electroanal. Chem.Interface Electrochem. 84 1
[18] Haynes C L, Yonzon C R, Zhang X and Van Duyne R P 2005 J. Raman Spectrosc. 36 471
[19] Dieringer J A, McFarland A D, Shah N C, Stuart D A, Whitney A V, Yonzon C R, Young M A, Zhang X and Van Duyne R P 2006 Faraday Discuss. 132 9
[20] Haller K L, Bumm L A, Altkorn R I, Zeman E J, Schatz G C and Vanduyne R P 1989 J. Chem. Phys. 90 1237
[21] Noginov M A, Zhu G, Belgrave A M, Bakker R, Shalaev V M, Narimanov E E, Stout S, Herz E, Suteewong T and Wiesner U 2009 Nature 460 1110
[22] Zhou W, Dridi M, Suh J. Y, Kim C H, Co D T, Wasielewski M R, Schatz G C and Odom T W 2013 Nat. Nanotechnol. 8 506
[23] Fang N, Sun C, Luo Q and Zhang X 2004 Nano Lett. 4 1085
[24] Kik P G, Maier S A and Atwater H A 2004 Proc. SPIE 5347 215
[25] Sundaramurthy A, Schuck P J, Conley N R, Fromm D P, Kino G S and Moerner W E 2006 Nano Lett. 6 355
[26] Chanda D, Shigeta K, Truong T, Lui E, Mihi A, Schulmerich M, Braun P V, Bhargava R and John A 2011 Nat. Commun. 2 479
[27] Xiao T, Cheng Z and Goda K 2017 Nanotechnology 28 245201
[28] Li Z, Li Y, Wang X, Yu Y, Tay B, Liu Z and Fang Z 2017 ACS Nano 11 1165
[29] Yu Y, Ji Z, Zu S, Du B, Kang Y, Li Z, Zhou Z, Shi K and Fang Z 2016 Adv. Funct. Mater. 26 6394
[30] Zhang S, Genov D A, Wang Y, Liu M and Zhang X 2008 Phys. Rev. Lett. 101 047401
[31] Lassiter J B, Sobhani H, Fan J A, Kundu J, Capasso F, Nordlander P and Halas N J 2010 Nano Lett. 10 3184
[32] Yanik A A, Cetin A E, Huang M, Artar A, Mousavi S H, Khanikaev A, Connor J H, Shvets G and Altug H 2011 Proc. Natl. Acad. Sci. USA 108 11784
[33] Linden S, Kuhl J and Giessen H 2001 Phys. Rev. Lett. 86 4688
[34] Christ A, Tikhodeev S G, Gippius N A, Kuhl J and Giessen H 2003 Phys. Rev. Lett. 91 183901
[35] Ameling R, Langguth L, Hentschel M, Mesch M, Braun P V and Giessen H 2010 Appl. Phys. Lett. 97 253116
[36] Kekatpure R D, Barnard E S, Cai W S and Brongersma M L 2010 Phys. Rev. Lett. 104 243902
[37] Yu Y, W Ding, Li Z Y and Andrews S 2014 Opt. Express 22 2528
[38] Yu Y, Sun Y Z, Andrews S, Li Z Y and Ding W 2015 J.Phys.: Conf. Ser. 680 012029
[39] Yu Y, Xiao T H, Guo H L and Li Z Y 2017 Photonic Research 5 143
[1] Multi-frequency focusing of microjets generated by polygonal prisms
Yu-Jing Yang(杨育静), De-Long Zhang(张德龙), and Ping-Rang Hua(华平壤). Chin. Phys. B, 2022, 31(3): 034201.
[2] A multi-band and polarization-independent perfect absorber based on Dirac semimetals circles and semi-ellipses array
Zhiyou Li(李治友), Yingting Yi(易颖婷), Danyang Xu(徐丹阳), Hua Yang(杨华), Zao Yi(易早), Xifang Chen(陈喜芳), Yougen Yi(易有根), Jianguo Zhang(张建国), and Pinghui Wu(吴平辉). Chin. Phys. B, 2021, 30(9): 098102.
[3] Optical absorption tunability and local electric field distribution of gold-dielectric-silver three-layered cylindrical nanotube
Ye-Wan Ma(马业万), Zhao-Wang Wu(吴兆旺), Yan-Yan Jiang(江燕燕), Juan Li(李娟), Xun-Chang Yin(尹训昌), Li-Hua Zhang(章礼华), and Ming-Fang Yi(易明芳). Chin. Phys. B, 2021, 30(11): 114207.
[4] Controlled plasmon-enhanced fluorescence by spherical microcavity
Jingyi Zhao(赵静怡), Weidong Zhang(张威东), Te Wen(温特), Lulu Ye(叶璐璐), Hai Lin(林海), Jinglin Tang(唐靖霖), Qihuang Gong(龚旗煌), and Guowei Lyu(吕国伟). Chin. Phys. B, 2021, 30(11): 114215.
[5] Photocurrent improvement of an ultra-thin silicon solar cell using the localized surface plasmonic effect of clustering nanoparticles
F Sobhani, H Heidarzadeh, H Bahador. Chin. Phys. B, 2020, 29(6): 068401.
[6] Selective enhancement of green upconversion luminescence of Er-Yb: NaYF4 by surface plasmon resonance of W18O49 nanoflowers and applications in temperature sensing
Ang Li(李昂), Jin-Lei Wu(吴金磊), Xue-Song Xu(许雪松), Yang Liu(刘洋), Ya-Nan Bao(包亚男), Bin Dong(董斌). Chin. Phys. B, 2018, 27(9): 097301.
[7] Subwavelength asymmetric Au-VO2 nanodisk dimer for switchable directional scattering
Han-Mou Zhang(张汉谋), Wu-Yun Shang(尚武云), Hua Lu(陆华), Fa-Jun Xiao(肖发俊), Jian-Lin Zhao(赵建林). Chin. Phys. B, 2018, 27(11): 117301.
[8] Ultrasensitive nanosensors based on localized surface plasmon resonances: From theory to applications
Wen Chen(陈文), Huatian Hu(胡华天), Wei Jiang(姜巍), Yuhao Xu(徐宇浩), Shunping Zhang(张顺平), Hongxing Xu(徐红星). Chin. Phys. B, 2018, 27(10): 107403.
[9] Effects of thickness & shape on localized surface plasmon resonance of sexfoil nanoparticles
Yan Chen(陈艳), Xianchao Liu(刘贤超), Weidong Chen(陈卫东), Zhengwei Xie(谢征微), Yuerong Huang(黄跃容), Ling Li(李玲). Chin. Phys. B, 2017, 26(1): 017807.
[10] Tunable multiple plasmon resonances and local field enhancement of nanocrescent/nanoring structure
Wang Bin-Bing (王彬兵), Zhou Jun (周骏), Chen Dong (陈栋), Fang Yun-Tuan (方云团), Chen Ming-Yang (陈明阳). Chin. Phys. B, 2015, 24(8): 087301.
[11] The enhancement of 21.2%-power conversion efficiency in polymer photovoltaic cells by using mixed Au nanoparticles with a wide absorption spectrum of 400 nm-1000 nm
Hao Jing-Yu (郝敬昱), Xu Ying (徐颖), Zhang Yu-Pei (张玉佩), Chen Shu-Fen (陈淑芬), Li Xing-Ao (李兴鳌), Wang Lian-Hui (汪联辉), Huang Wei (黄维). Chin. Phys. B, 2015, 24(4): 045201.
[12] Deep-ultraviolet surface plasmon resonance of Al and Alcore/Al2O3shell nanosphere dimers for surface-enhanced spectroscopy
Ci Xue-Ting (慈雪婷), Wu Bo-Tao (吴伯涛), Song Min (宋敏), Chen Geng-Xu (陈耿旭), Liu Yan (刘岩), Wu E (武愕), Zeng He-Ping (曾和平). Chin. Phys. B, 2014, 23(9): 097303.
[13] Fano-like resonance characteristics of asymmetric Fe2O3@Au core/shell nanorice dimer
Wang Bin-Bing (王彬兵), Zhou Jun (周骏), Zhang Hao-Peng (张昊鹏), Chen Jin-Ping (陈金平). Chin. Phys. B, 2014, 23(8): 087303.
[14] High-order plasmon resonances in an Ag/Al2O3 core/shell nanorice
Chen Li (陈立), Wei Hong (魏红), Chen Ke-Qiu (陈克求), Xu Hong-Xing (徐红星). Chin. Phys. B, 2014, 23(2): 027303.
[15] Influence of polarization direction, incidence angle, and geometry on near-field enhancement in two-layered gold nanowires
Wu Da-Jian(吴大建), Jiang Shu-Min(蒋书敏), and Liu Xiao-Jun(刘晓峻) . Chin. Phys. B, 2012, 21(7): 077803.
No Suggested Reading articles found!