Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(12): 128709    DOI: 10.1088/1674-1056/26/12/128709
Special Issue: SPECIAL TOPIC — Soft matter and biological physics
SPECIAL TOPIC—Soft matter and biological physics Prev   Next  

The birhythmicity increases the diversity of p53 oscillation induced by DNA damage

Dao-Guang Wang(王道光)1,2, Chun-Hong Zhou(周春红)2, Xiao-Peng Zhang(张小鹏)1,3
1. National Laboratory of Solid State Microstructure and Department of Physics, Nanjing University, Nanjing 210093, China;
2. School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China;
3. Kuang Yaming Honors School, Nanjing University, Nanjing 210023, China
Abstract  

The tumor suppressor p53 mediates the cellular response to various stresses. It was experimentally shown that the concentration of p53 can show oscillations with short or long periods upon DNA damage. The underlying mechanism for this phenomenon is still not fully understood. Here, we construct a network model comprising the ATM-p53-Wip1 and p53-Mdm2 negative feedback loops and ATM autoactivation. We recapitulate the typical features of p53 oscillations including p53 birhythmicity. We show the dependence of p53 birhythmicity on various factors such as the phosphorylation status of ATM. We also perform stochastic simulation and find the noise-induced transitions between two modes of p53 oscillation, which increases the p53 variability in both the amplitude and period. These results suggest that p53 birhythmicity enhances the responsiveness of p53 network, which may facilitate its tumor suppressive function.

Keywords:  p53      birhythmicity      oscillation  
Received:  08 October 2017      Revised:  16 October 2017      Accepted manuscript online: 
PACS:  87.18.Mp (Signal transduction networks)  
  82.40.Bj (Oscillations, chaos, and bifurcations)  
  82.39.Rt (Reactions in complex biological systems)  
  87.18.Tt (Noise in biological systems)  
Fund: 

Project supported by the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant Nos. 16KJB180007 and 16KJB140014), the Special Foundation of Theoretical Physics Research Program of China (Grant No. 11547025), and the National Natural Science Foundation of China (Grant No. 11574139).

Corresponding Authors:  Xiao-Peng Zhang     E-mail:  zhangxp@nju.edu.cn

Cite this article: 

Dao-Guang Wang(王道光), Chun-Hong Zhou(周春红), Xiao-Peng Zhang(张小鹏) The birhythmicity increases the diversity of p53 oscillation induced by DNA damage 2017 Chin. Phys. B 26 128709

[1] Schisano B, Tripathi G, McGee K, McTernan P G and Ceriello A 2011 Diabetologia 54 1219
[2] Kamb A, Gruis N A, Weaver-Feldhaus J, Liu Q Y, Harshman K, Tavtigian S V, Stockert E, Day R S, Johnson B E and Skolnick M H 1994 Science 264 436
[3] Lincoln G A, Clarke I J, Hut R A and Hazlerigg D G 2006 Science 314 1941
[4] Moran F and Goldbeter A 1984 Biophys.Chem. 20 149
[5] Leloup J C and Goldbeter A 1999 J.Theor.Biol. 198 445
[6] Decroly O and Goldbeter A 1982 Proc. Natl. Acad. Sci. USA 79 6917
[7] Haberichter T, Marhl M and Heinrich R 2001 Biophys. Chem. 90 17
[8] Goldbeter A and Morán F 1988 Eur. Biophys. J. 15 277
[9] Kuerbitz S J, Plunkett B S, Walsh W V and Kastan M B 1992 Proc. Natl. Acad. Sci. USA 89 7491
[10] Levine A J1997 Cell 88 323
[11] Serrano M, Lin A W, McCurrach M E, Beach D and Lowe S W 1997 Cell 88 593
[12] Loewer A, Karanam K, Mock C and Lahav G 2013 BMC Biol. 11 114
[13] Geva-Zatorsky N, Rosenfeld N, Itzkovitz S, Milo R, Sigal A, Dekel E, Yarnitzky T, Liron Y, Polak P, Lahav G and Alon U 2006 Mol. Syst. Biol. 2 0033
[14] Ouattara D A, Abou-Jaoudé W and Kaufman M 2010 J. Theor. Biol. 264 1177
[15] Kim J K and Jackson T L 2013 PLoS One 8 e65242
[16] Geva-Zatorsky N, Dekel E, Batchelor E, Lahav G and Alon U 2010 Proc. Natl. Acad. Sci. USA 107 13550
[17] Abou-Jaoudé W, Chaves M and Gouzé J L 2011 PLoS One 6 e17075
[18] Bakkenist C J and Kastan M B 2003 Nature 421 499
[19] Batchelor E, Mock C S, Bhan I, Loewer A and Lahav G 2008 Mol. Cell 30 277
[20] Zhang X P, Liu F and Wang W 2011 Proc. Natl. Acad. Sci. USA 108 8990
[21] Batchelor E, Loewer A, Mock C and Lahav G 2011 Mol. Syst. Biol. 7 488
[22] Zhang X P, Liu F, Cheng Z and Wang W 2009 Proc. Natl. Acad. Sci. USA 106 12245
[23] Vassilev L T, Vu B T, Graves B, Carvajal D, Podlaski F, Filipovic Z, Kong N, Kammlott U, Lukacs C, Klein C, Fotouhi N and Liu E A 2004 Science 303 844
[24] Kozlov S V, Graham M E, Jakob B, Tobias F, Kijas A W, Tanuji M, Chen P, Robinson P J, Taucher-Scholz G, Suzuki K, So S, Chen D and Lavin M F 2011 J. Biol. Chem. 286 9107
[25] Shiloh Y and Ziv Y 2013 Nat. Rev. Mol. Cell Biol. 14 197
[26] Stommel J M and Wahl G M 2004 EMBO J. 23 1547
[27] Shreeram S, Demidov O N, Hee W K, Yamaguchi H, Onishi N, Kek C, Timofeev O N, Dudgeon C, Fornace A J, Anderson C W, Minami Y, Appella E and Bulavin D V 2006 Mol. Cell 23 757
[28] Banin S, Moyal L, Shieh S-Y, Taya Y, Anderson CW, Chessa L, Smorodinsky NI, Prives C, Reiss Y, Shiloh Y and Ziv Y 1998 Science 281 1674
[29] Canman C E, Lim D-S, Cimprich K A, Taya Y, Tamai K, Sakaguchi K, Appella E, Kastan M B and Siliciano J D 1998 Science 281 1677
[30] Dupré A, Boyer-Chatenet L and Gautier J 2006 Nat. Struct. Mol. Biol. 13 451
[31] Wang L F, Qiu K and Jia Y 2017 Chin. Phys. B 26 030503
[32] Elowitz M B, Levine A J, Siggia E D and Swain P S 2002 Science 297 1183
[33] Rosenfeld N, Young J W, Alon U, Swain P S and Elowitz M B 2005 Science 307 1962
[34] Bowsher C G, Voliotis M and Swain P S 2013 PLoS. Comput. Biol. 9 e1002965
[35] Uhlenbeck G E and Ornstein L S 1930 Phys. Rev. 36 823
[36] Gillespie D T 1996 Phys. Rev. E 54 2084
[37] Li W, Zhang M T and Zhao J F 2017 Chin. Phys. B 26 090501
[38] Fox R F 1991 Phys. Rev. A 43 2649
[39] Biswas D, Banerjee T and Kurths J 2017 Chaos 27 063110
[1] Improved functional-weight approach to oscillatory patterns in excitable networks
Tao Li(李涛), Lin Yan(严霖), and Zhigang Zheng(郑志刚). Chin. Phys. B, 2022, 31(9): 090502.
[2] Quantum oscillations in a hexagonal boron nitride-supported single crystalline InSb nanosheet
Li Zhang(张力), Dong Pan(潘东), Yuanjie Chen(陈元杰), Jianhua Zhao(赵建华), and Hongqi Xu(徐洪起). Chin. Phys. B, 2022, 31(9): 098507.
[3] Spatial and spectral filtering of tapered lasers by using tapered distributed Bragg reflector grating
Jing-Jing Yang(杨晶晶), Jie Fan(范杰), Yong-Gang Zou(邹永刚),Hai-Zhu Wang(王海珠), and Xiao-Hui Ma(马晓辉). Chin. Phys. B, 2022, 31(8): 084203.
[4] Oscillation properties of matter-wave bright solitons in harmonic potentials
Shu-Wen Guan(关淑文), Ling-Zheng Meng(孟令正), and Li-Chen Zhao(赵立臣). Chin. Phys. B, 2022, 31(8): 080506.
[5] Impact of gate offset in gate recess on DC and RF performance of InAlAs/InGaAs InP-based HEMTs
Shurui Cao(曹书睿), Ruize Feng(封瑞泽), Bo Wang(王博), Tong Liu(刘桐), Peng Ding(丁芃), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(5): 058502.
[6] Enhancement of fMAX of InP-based HEMTs by double-recessed offset gate process
Bo Wang(王博), Peng Ding(丁芃), Rui-Ze Feng(封瑞泽), Shu-Rui Cao(曹书睿), Hao-Miao Wei(魏浩淼), Tong Liu(刘桐), Xiao-Yu Liu(刘晓宇), Hai-Ou Li(李海鸥), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(5): 058506.
[7] Nonlinear oscillation characteristics of magnetic microbubbles under acoustic and magnetic fields
Lixia Zhao(赵丽霞), Huimin Shi(史慧敏), Isaac Bello, Jing Hu(胡静), Chenghui Wang(王成会), and Runyang Mo(莫润阳). Chin. Phys. B, 2022, 31(3): 034302.
[8] Pattern transition and regulation in a subthalamopallidal network under electromagnetic effect
Zilu Cao(曹子露), Lin Du(都琳), Honghui Zhang(张红慧), Yuzhi Zhao(赵玉枝), Zhuan Shen(申转), and Zichen Deng(邓子辰). Chin. Phys. B, 2022, 31(11): 118701.
[9] Raman lasing and other nonlinear effects based on ultrahigh-Q CaF2 optical resonator
Tong Xing(邢彤), Enbo Xing(邢恩博), Tao Jia(贾涛), Jianglong Li(李江龙), Jiamin Rong(戎佳敏), Yanru Zhou(周彦汝), Wenyao Liu(刘文耀), Jun Tang(唐军), and Jun Liu(刘俊). Chin. Phys. B, 2022, 31(10): 104204.
[10] Periodic and chaotic oscillations in mutual-coupled mid-infrared quantum cascade lasers
Zhi-Wei Jia(贾志伟), Li Li(李丽), Yi-Yan Guo(郭一岩), An-Bang Wang(王安帮), Hong Han(韩红), Jin-Chuan Zhang(张锦川), Pu Li(李璞), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2022, 31(10): 100505.
[11] Impact of symmetric gate-recess length on the DC and RF characteristics of InP HEMTs
Ruize Feng(封瑞泽), Bo Wang(王博), Shurui Cao(曹书睿), Tong Liu(刘桐), Yongbo Su(苏永波), Wuchang Ding(丁武昌), Peng Ding(丁芃), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(1): 018505.
[12] Numerical analysis of motional mode coupling of sympathetically cooled two-ion crystals
Li-Jun Du(杜丽军), Yan-Song Meng(蒙艳松), Yu-Ling He(贺玉玲), and Jun Xie(谢军). Chin. Phys. B, 2021, 30(7): 073702.
[13] Temperature effects of GaAs/Al0.45Ga0.55As superlattices on chaotic oscillation
Xiao-Peng Luo(罗晓朋), Yan-Fei Liu(刘延飞), Dong-Dong Yang(杨东东), Cheng Chen(陈诚), Xiu-Jian Li(李修建), and Jie-Pan Ying(应杰攀). Chin. Phys. B, 2021, 30(10): 106805.
[14] Dual mechanisms of Bcl-2 regulation in IP3-receptor-mediated Ca2+ release: A computational study
Hong Qi(祁宏), Zhi-Qiang Shi(史志强), Zhi-Chao Li(李智超), Chang-Jun Sun(孙长君), Shi-Miao Wang(王世苗), Xiang Li(李翔), and Jian-Wei Shuai(帅建伟). Chin. Phys. B, 2021, 30(10): 108704.
[15] Propagation dynamics of relativistic electromagnetic solitary wave as well as modulational instability in plasmas
Rong-An Tang(唐荣安), Tiao-Fang Liu(刘调芳), Xue-Ren Hong(洪学仁), Ji-Ming Gao(高吉明), Rui-Jin Cheng(程瑞锦), You-Lian Zheng(郑有莲), and Ju-Kui Xue(薛具奎). Chin. Phys. B, 2021, 30(1): 015201.
No Suggested Reading articles found!