Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(11): 114303    DOI: 10.1088/1674-1056/26/11/114303
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Theoretical analysis of interaction between a particle and an oscillating bubble driven by ultrasound waves in liquid

Yao-Rong Wu(武耀蓉), Cheng-Hui Wang(王成会)
Institute of Applied Acoustics, Shaanxi Normal University, Xi'an 710062, China
Abstract  

A theoretical model is developed to describe the interaction of a particle and an oscillating bubble at arbitrary separation between them. The derivation of the model is based on the multipole expansion of the particle and bubble velocity potentials and the use of Lagrangian mechanics. The model consists of three coupled ordinary differential equations. One of them accounts for the pulsation of the bubble and the other two describe the translation of the bubble and particle in an infinite, incompressible liquid. The model here is accurate to order 1/d10, where d is the distance between the centers of the particle and bubble. The effects of the size and density of the particle are investigated, namely, the interaction between the particle and bubble changes from repulsion to attraction with the increment of the particle density, and the increment of the particle size makes the interaction between the particle and bubble stronger. It is demonstrated that the driving frequency and acoustic pressure amplitude can affect the interaction of the particle and bubble. It is shown that the correct modeling of the translational dynamics of the bubble and particle at small separation distances requires terms accurate up to the tenth order.

Keywords:  particle      bubble      ultrasound wave  
Received:  01 June 2017      Revised:  13 July 2017      Accepted manuscript online: 
PACS:  43.35.+d (Ultrasonics, quantum acoustics, and physical effects of sound)  
  43.25.+y (Nonlinear acoustics)  
  47.55.dp (Cavitation and boiling)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11204168 and 11474191) and the Fundamental Research Funds for the Central Universities of China (Grant No. GK201603102).

Corresponding Authors:  Cheng-Hui Wang     E-mail:  Wangld001@snnu.edu.cn

Cite this article: 

Yao-Rong Wu(武耀蓉), Cheng-Hui Wang(王成会) Theoretical analysis of interaction between a particle and an oscillating bubble driven by ultrasound waves in liquid 2017 Chin. Phys. B 26 114303

[1] Doinikov A A 2001 Phys. Rev. E 64 026301
[2] Ida M 2003 Phys. Rev. E 67 056617
[3] Doinikov A A 2004 J. Acoust. Soc. Am. 116 821
[4] Hamilton M F, Ilinskii Y A, Meegan G D and Zabolotskaya E A 2005 ARLO 6 207
[5] Ilinskii Y A, Hamilton M F and Zabolotskaya E A 2007 J. Acoust. Soc. Am. 121 786
[6] Chew L W, Klaseboer E, Ohl S W and Khoo B C 2013 Exp. Therm. Fluid Sci. 44 108
[7] Wang C H and Cheng J C 2013 Chin. Phys. B 22 014304
[8] Zou J, Li B and Ji C 2015 Exp. Therm. Fluid Sci. 61 105
[9] Doinikov A A and Bouakaz A 2015 Phys. Rev. E 92 043001
[10] Han R, Zhang A and Liu Y L 2015 Ocean. Eng. 110 325
[11] Daemi M, Rahni M T and Massah H 2015 Chin. Phys. B 24 024302
[12] Li S and Ni B Y 2016 Eng. Anal. Bound. Elem. 68 63
[13] Shi J, Yang D S, Shi S G, Hu B, Zhang H Y and Hu S Y 2016 Chin. Phys. B 25 024304
[14] Gumnlya M, Utikar R P, Evans G M, Joshi J B and Pareek V 2017 Chem. Eng. Sci. 166 1
[15] Liang J F, Wang X, Yang J and Gong L X 2017 Ultrasonics 75 58
[16] Pishchalnikov Y A, Sapozhnikov O A, Bailey M R, Williams J C, Cleveland R O, Colonius T, Crum L A, Evan A P and McAteer J A 2003 J. Endourol 17 435
[17] Maxwell R, Ata S, Wanless E J and Moreno-Atanasio R 2012 J. Colloid Interface Sci. 381 1
[18] Mizushima Y, Nagami Y, Nakamara Y and Saito T 2013 Chem. Eng. Sci. 93 395
[19] Li H P, Afacan A, Liu Q X and Xu Z H 2015 Miner. Eng. 84 106
[20] Vazirizadeh A, Bouchard J and Chen Y 2016 Int. J. Miner. Process. 157 163
[21] Zhang Y N, Qian Z D, Ji B and Wu Y L 2016 Renew. Sust. Energ. Rev. 56 303
[22] Hay T A, Hamilton M F, Ilinskii Y A and Zabolotskaya E A 2009 J. Acoust. Soc. Am. 125 1331
[23] Li S, Han R and Zhang A M 2016 J. Fluids Struct. 65 333
[24] van der Meer S M, Dollet B, Voormolen M M, Chin C T, Bouakaz A, de Jong N, Versluis M and Lohse D 2007 J. Acoust. Soc. Am. 121 648
[25] Magnaudet J and Legendre D 1998 Phys. Fluids 10 550
[1] Simulation of single bubble dynamic process in pool boiling process under microgravity based on phase field method
Chang-Sheng Zhu(朱昶胜), Bo-Rui Zhao(赵博睿), Yao Lei(雷瑶), and Xiu-Ting Guo(郭秀婷). Chin. Phys. B, 2023, 32(4): 044702.
[2] Reconstruction and functionalization of aerogels by controlling mesoscopic nucleation to greatly enhance macroscopic performance
Chen-Lu Jiao(焦晨璐), Guang-Wei Shao(邵光伟), Yu-Yue Chen(陈宇岳), and Xiang-Yang Liu(刘向阳). Chin. Phys. B, 2023, 32(3): 038103.
[3] Resistance law of a rod penetrating a multilayer granular raft
Zonglin Li(李宗霖), Qiang Tian(田强), and Haiyan Hu(胡海岩). Chin. Phys. B, 2023, 32(3): 034501.
[4] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[5] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[6] Magnetic triangular bubble lattices in bismuth-doped yttrium iron garnet
Tao Lin(蔺涛), Chengxiang Wang(王承祥), Zhiyong Qiu(邱志勇), Chao Chen(陈超), Tao Xing(邢弢), Lu Sun(孙璐), Jianhui Liang(梁建辉), Yizheng Wu(吴义政), Zhong Shi(时钟), and Na Lei(雷娜). Chin. Phys. B, 2023, 32(2): 027505.
[7] Effects of adjacent bubble on spatiotemporal evolutions of mechanical stresses surrounding bubbles oscillating in tissues
Qing-Qin Zou(邹青钦), Shuang Lei(雷双), Zhang-Yong Li(李章勇), and Dui Qin(秦对). Chin. Phys. B, 2023, 32(1): 014302.
[8] Optical pulling force on nanoparticle clusters with gain due to Fano-like resonance
Jiangnan Ma(马江南), Feng Lv(冯侣), Guofu Wang(王国富), Zhifang Lin(林志方), Hongxia Zheng(郑红霞), and Huajin Chen(陈华金). Chin. Phys. B, 2023, 32(1): 014205.
[9] Two-dimensional Sb cluster superlattice on Si substrate fabricated by a two-step method
Runxiao Zhang(张润潇), Zi Liu(刘姿), Xin Hu(胡昕), Kun Xie(谢鹍), Xinyue Li(李新月), Yumin Xia(夏玉敏), and Shengyong Qin(秦胜勇). Chin. Phys. B, 2022, 31(8): 086801.
[10] Nonvanishing optimal noise in cellular automaton model of self-propelled particles
Guang-Le Du(杜光乐) and Fang-Fu Ye(叶方富). Chin. Phys. B, 2022, 31(8): 086401.
[11] Inertial focusing and rotating characteristics of elliptical and rectangular particle pairs in channel flow
Pei-Feng Lin(林培锋), Xiao Hu(胡箫), and Jian-Zhong Lin(林建忠). Chin. Phys. B, 2022, 31(8): 080501.
[12] Combination of spark discharge and nanoparticle-enhanced laser-induced plasma spectroscopy
Qing-Xue Li(李庆雪), Dan Zhang(张丹), Yuan-Fei Jiang(姜远飞), Su-Yu Li(李苏宇), An-Min Chen(陈安民), and Ming-Xing Jin(金明星). Chin. Phys. B, 2022, 31(8): 085201.
[13] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[14] Current-driven dynamics of skyrmion bubbles in achiral uniaxial magnets
Yaodong Wu(吴耀东), Jialiang Jiang(蒋佳良), and Jin Tang(汤进). Chin. Phys. B, 2022, 31(7): 077504.
[15] Onion-structured transition metal dichalcogenide nanoparticles by laser fabrication in liquids and atmospheres
Le Zhou(周乐), Hongwen Zhang(张洪文), Qian Zhao(赵倩), and Weiping Cai(蔡伟平). Chin. Phys. B, 2022, 31(7): 076106.
No Suggested Reading articles found!