Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(10): 106202    DOI: 10.1088/1674-1056/26/10/106202
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Theoretical calculations of hardness and metallicity for multibond hexagonal 5d transition metal diborides with ReB2 structure

Jun Yang(杨俊)1,2, Fa-Ming Gao(高发明)3, Yong-Shan Liu(刘永山)4
1. Postdoctoral Research Station of Computer Science and Technology, School of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, China;
2. Hebei University of Environmental Engineering, Qinhuangdao 066102, China;
3. Key Laboratory of Applied Chemistry, Department of Applied Chemistry, Yanshan University, Qinhuangdao 066004, China;
4. School of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, China
Abstract  

The hardness, electronic, and elastic properties of 5d transition metal diborides with ReB2 structure are studied theoretically by using the first principles calculations. The calculated results are in good agreement with the previous experimental and theoretical results. Empirical formulas for estimating the hardness and partial number of effective free electrons for each bond in multibond compounds with metallicity are presented. Based on the formulas, IrB2 has the largest hardness of 21.8 GPa, followed by OsB2 (21.0 GPa) and ReB2 (19.7 GPa), indicating that they are good candidates as hard materials.

Keywords:  hardness      metallicity      multibond      effective free electrons  
Received:  25 April 2017      Revised:  26 June 2017      Accepted manuscript online: 
PACS:  62.20.Qp (Friction, tribology, and hardness)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.20.Be (Transition metals and alloys)  
  81.05.Zx (New materials: theory, design, and fabrication)  
Corresponding Authors:  Jun Yang     E-mail:  yjzcgaaa@163.com

Cite this article: 

Jun Yang(杨俊), Fa-Ming Gao(高发明), Yong-Shan Liu(刘永山) Theoretical calculations of hardness and metallicity for multibond hexagonal 5d transition metal diborides with ReB2 structure 2017 Chin. Phys. B 26 106202

[1] Chung H Y, Weinberger M B, Levine J B, Kavner A, Yang J M, Tolbert S H and Kaner R B 2007 Science 316 436
[2] Cumberland R W, Weinberger M B, Gilman J J, Clark S M, Tolbert S H and Kaner R B 2005 J. Am. Chem. Soc. 127 7264
[3] Chung H Y, Yang J M, Tolbert S H and Kaner R B 2008 J. Mater. Res. 23 1797
[4] Ren F Z, Wang Y X and Lo V C 2010 J. Solid State Chem. 183 915
[5] Li X F, Tao Y P and Peng F 2016 J. Alloys Compd. 687 579
[6] Marín-Suárez M, Vélez M E, David J and Arroyave-Franco M 2016 Compd. Mater. Sci. 122 240
[7] Wang B, Wang D Y and Wang Y X 2013 J. Alloys Compd. 573 20
[8] Wang Y, Chen W, Chen X, Liu H Y, Ding Z H, Ma Y M, Wang X D, Cao Q P and Jiang J Z 2012 J. Alloys Compd. 538 115
[9] Zhao W J and Wang Y X 2009 J. Solid State Chem. 182 2880
[10] Gou H Y, Hou L, Zhang J W and Gao F M 2008 Appl. Phys. Lett. 92 241901
[11] Yang J and Gao F M 2010 Phys. Status Solidi B 247 2161
[12] Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J and Payne M C 2002 J. Phys.:Condens. Matter 14 2717
[13] Vanderbilt D 1990 Phys. Rev. B 41 R7892
[14] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[15] Wu Z J, Zhao E J, Xiang H P, Hao X F, Liu X J and Meng J 2007 Phys. Rev. B 76 054115
[16] Hill R 1952 Proc. Phys. Soc. 65 349
[17] Liang Y C and Zhang B 2007 Phys. Rev. B 76 132101
[18] Aydin S and Simsek M 2009 Phys. Rev. B 80 134107
[19] Hao X F, Xu Y H, Wu Z J, Zhou D F, Liu X J, Cao X Q and Meng J 2006 Phys. Rev. B 74 224112
[20] Wang Y X 2007 Appl. Phys. Lett. 91 101904
[21] Xu J H, Oguchi T and Freeman A J 1987 Phys. Rev. B 35 6940
[22] Xu J H and Freeman A J 1989 Phys. Rev. B 40 11927
[23] Xu J H and Freeman A J 1990 Phys. Rev. B 41 12553
[24] Xu J H and Freeman A J 1991 J. Mater. Res. 6 1188
[25] Ravindran P, Subramoniam G and Asokamani R 1996 Phys. Rev. B 53 1129
[26] Wu Z G, Chen X J, Struzhkin V V and Cohen R E 2005 Phys. Rev. B 71 214103
[27] Gao F M 2006 Phys. Rev. B 73 132104
[28] Segall M D, Shah R, Pickard C J and Payne M C 1996 Phys. Rev. B 54 16317
[29] Locci A M, Licheri R, Orrú R and Cao G 2009 Ceram. Int. 35 397
[30] Chung H Y, Weinberger M B, Yang J M, Tolbert S H and Kaner R B 2008 Appl. Phys. Lett. 92 261904
[31] Dubrovinskaia N, Dubrovinsky L and Solozhenko V L 2007 Science 318 1550
[32] Gao F M and Gao L H 2010 J. Superhard Mater. 32 148
[33] Qin J Q, He D W, Wang J H, Fang L M, Lei L, Li Y J, Hu J, Kou Z L and Bi Y 2008 Adv. Mater. 20 4780
[1] Microstructure and hardening effect of pure tungsten and ZrO2 strengthened tungsten under carbon ion irradiation at 700℃
Chun-Yang Luo(罗春阳), Bo Cui(崔博), Liu-Jie Xu(徐流杰), Le Zong(宗乐), Chuan Xu(徐川), En-Gang Fu(付恩刚), Xiao-Song Zhou(周晓松), Xing-Gui Long(龙兴贵), Shu-Ming Peng(彭述明), Shi-Zhong Wei(魏世忠), and Hua-Hai Shen(申华海). Chin. Phys. B, 2022, 31(9): 096102.
[2] Structure, phase evolution and properties of Ta films deposited using hybrid high-power pulsed and DC magnetron co-sputtering
Min Huang(黄敏), Yan-Song Liu(刘艳松), Zhi-Bing He(何智兵), and Yong Yi(易勇). Chin. Phys. B, 2022, 31(6): 066101.
[3] Properties of B4C-TiB2 ceramics prepared by spark plasma sintering
Jingzhe Fan(范静哲), Weixia Shen(沈维霞), Zhuangfei Zhang(张壮飞, Chao Fang(房超), Yuewen Zhang(张跃文), Liangchao Chen(陈良超), Qianqian Wang(王倩倩), Biao Wan(万彪), and Xiaopeng Jia(贾晓鹏). Chin. Phys. B, 2021, 30(3): 038105.
[4] A first-principles study on zigzag phosphorene nanoribbons terminated by transition metal atoms
Shuai Yang(杨帅), Zhiyong Wang(王志勇), Xueqiong Dai(戴学琼), Jianrong Xiao(肖剑荣), and Mengqiu Long(龙孟秋). Chin. Phys. B, 2021, 30(2): 027305.
[5] Progress in functional studies of transition metal borides
Teng Ma(马腾), Pinwen Zhu(朱品文), and Xiaohui Yu(于晓辉). Chin. Phys. B, 2021, 30(10): 108103.
[6] Nanosheet-structured B4C with high hardness up to 42 GPa
Chang-Chun Wang(王常春), Le-Le Song(宋乐乐). Chin. Phys. B, 2019, 28(6): 066201.
[7] Electronic and mechanical properties of half-metallic half-Heusler compounds CoCrZ (Z=S, Se, and Te)
Hai-Ming Huang(黄海铭), Chuan-Kun Zhang(张传坤), Ze-Dong He(贺泽东), Jun Zhang(张俊), Jun-Tao Yang(杨俊涛), Shi-Jun Luo(罗时军). Chin. Phys. B, 2018, 27(1): 017103.
[8] High-pressure dynamic, thermodynamic properties, and hardness of CdP2
Shi-Quan Feng(冯世全), Ling-Li Wang(王伶俐), Xiao-Xu Jiang(姜晓旭), Hai-Nin Li(李海宁), Xin-Lu Cheng(程新路), Lei Su(苏磊). Chin. Phys. B, 2017, 26(4): 046301.
[9] New ordered MAX phase Mo2TiAlC2: Elastic and electronic properties from first-principles
M A Hadi, M S Ali. Chin. Phys. B, 2016, 25(10): 107103.
[10] Effect of deposition parameters on structural and mechanicalproperties of niobium nitride synthesized by plasma focus device
Jamil Siddiqui, Tousif Hussain, Riaz Ahmad, Nida Khalid. Chin. Phys. B, 2015, 24(6): 065204.
[11] First principles study on d0 half-metallic properties of full-Heusler compounds RbCaX2 (X=C, N, and O)
Gao Yong-Chun (高永春), Wang Xiao-Tian (王啸天), Habib Rozale. Chin. Phys. B, 2015, 24(6): 067102.
[12] Stability and elastic properties of NbxCy compounds
Gao Xu-Peng (高旭鹏), Jiang Ye-Hua (蒋业华), Liu Yang-Zhen (刘洋赈), Zhou Rong (周荣), Feng Jing (冯晶). Chin. Phys. B, 2014, 23(9): 097704.
[13] Preparation and characterization of thick cubic boron nitride films
Wang Ming-E (王明娥), Ma Guo-Jia (马国佳), Dong Chuang (董闯), Gong Shui-Li (巩水利). Chin. Phys. B, 2014, 23(6): 066805.
[14] Elastic and thermodynamic properties of vanadium nitride under pressure and the effect of metallic bonding on its hardness
Pu Chun-Ying (濮春英), Zhou Da-Wei (周大伟), Bao Dai-Xiao (包代小), Lu Cheng (卢成), Jin Xi-Lian (靳希联), Su Tai-Chao (宿太超), Zhang Fei-Wu (张飞武). Chin. Phys. B, 2014, 23(2): 026201.
[15] Nitriding molybdenum: Effects of duration and fill gas pressure when using 100-Hz pulse DC discharge technique
U. Ikhlaq, R. Ahmad, M. Shafiq, S. Saleem, M. S. Shah, T. Hussain, I. A. Khan, K. Abbas, M. S. Abbas. Chin. Phys. B, 2014, 23(10): 105203.
No Suggested Reading articles found!