Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(10): 107103    DOI: 10.1088/1674-1056/25/10/107103
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

New ordered MAX phase Mo2TiAlC2: Elastic and electronic properties from first-principles

M A Hadi1, M S Ali2
1 Department of Physics, University of Rajshahi, Rajshahi-6205, Bangladesh;
2 Department of Physics, Pabna University of Science and Technology, Pabna 6600, Bangladesh
Abstract  First-principles computation on the basis of density functional theory (DFT) is executed with the CASTEP code to explore the structural, elastic, and electronic properties along with Debye temperature and theoretical Vickers' hardness of newly discovered ordered MAX phase carbide Mo2TiAlC2. The computed structural parameters are very reasonable compared with the experimental results. The mechanical stability is verified by using the computed elastic constants. The brittleness of the compound is indicated by both the Poisson's and Pugh's ratios. The new MAX phase is capable of resisting the pressure and tension and also has the clear directional bonding between atoms. The compound shows significant elastic anisotropy. The Debye temperature estimated from elastic moduli (B, G) is found to be 413.6 K. The electronic structure indicates that the bonding nature of Mo2TiAlC2 is a mixture of covalent and metallic with few ionic characters. The electron charge density map shows a strong directional Mo-C-Mo covalent bonding associated with a relatively weak Ti-C bond. The calculated Fermi surface is due to the low-dispersive Mo 4d-like bands, which makes the compound a conductive one. The hardness of the compound is also evaluated and a high value of 9.01 GPa is an indication of its strong covalent bonding.
Keywords:  new ordered MAX phase      density functional theory calculations      Debye temperature      Vickers hardness  
Received:  04 May 2016      Revised:  26 June 2016      Accepted manuscript online: 
PACS:  71.20.Be (Transition metals and alloys)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  65.40.-b (Thermal properties of crystalline solids)  
  62.20.Qp (Friction, tribology, and hardness)  
Corresponding Authors:  M A Hadi     E-mail:  hadipab@gmail.com

Cite this article: 

M A Hadi, M S Ali New ordered MAX phase Mo2TiAlC2: Elastic and electronic properties from first-principles 2016 Chin. Phys. B 25 107103

[1] Barsoum M W 2000 Prog. Solid State Chem. 28 201
[2] Jeitschko W, Nowotny H and Benesovsky F 1963 Monatsh. Chem. 94 672
[3] Jeitschko W, Nowotny H and Benesovsky F 1963 Monatsh. Chem. 94 844
[4] Jeitschko W, Nowotny H and Benesovsky F 1963 Monatsh. Chem. 94 1198
[5] Jeitschko W, Nowotny H and Benesovsky F 1963 Monatsh. Chem. 94 1201
[6] Jeitschko W, Nowotny H and Benesovsky F 1964 Monatsh. Chem. 95 178
[7] Jeitschko W, Nowotny H and Benesovsky F 1964 Monatsh. Chem. 95 431
[8] Jeitschko W, Holleck H, Nowotny H and Benesovsky F 1964 Monatsh. Chem. 95 1004
[9] Sun Z M, Hashimoto H, Zhang Z F, Yang S L and Tada S 2006 Mater. Trans. 47 170
[10] Barsoum M W and El-Raghy T 1996 J. Am. Ceram. Soc. 79 1953
[11] Yoo H, Barsoum M W and El-Raghy T 2000 Nature 407 581
[12] Barsoum M W, Farber L and El-Raghy T 1999 Metall. Mater. Trans. A 30 1727
[13] El-Raghy T, Barsoum M W, Zavaliangos A and Kalidindi S R 1999 J. Am. Ceram. Soc. 82 2855
[14] Sundberg M, Malmqvist G, Magnusson A and El-Raghy T 2004 Ceram. Inter. 30 1899
[15] Jovic V D, Barsoum M W, Jovic B M, Gupta S and El-Raghy T 2006 Corr. Sci. 48 4274
[16] Lofland S E, Hettinger J D, Harrell K, Finkel P, Gupta S, Barsoum M W and Hug G 2004 Appl. Phys. Lett. 84 508
[17] Anasori B, Halim J, Lu J, Cooper A, Voigt, Hultman L and Barsoum M W 2015 Scr. Mater. 101 5
[18] Jeitschko W and Nowotny H 1967 Monatsh. Chem. 98 329
[19] Anasori B, Dahlqvist M, Halim J, Moon E J, Lu J, Hosler B C, Caspi E N, May S J, Hultman L, Eklund P, Rosén J and Barsoum M W 2015 J. Appl. Phys. 118 094304
[20] Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M I J, Refson K and Payne M C 2005 Z. Kristall 220 567
[21] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[22] Vanderbilt D 1990 Phys. Rev. B 41 7892
[23] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[24] Fischer T H and Almlof J 1992 J. Phys. Chem. 96 9768
[25] Murnaghan F D 1951 Finite Deformation of an Elastic Solid (New York: Wiley)
[26] Voigt W 1928 Lehrbuch der Kristallphysik (Leipzig: Taubner)
[27] Reuss A 1929 Z. Angew. Math. Mech. 9 49
[28] Hill R 1963 Proc. Phys. Soc. A 65 349
[29] Anderson O L 1963 J. Phys. Chem. Solids 24 909
[30] Gao F M 2006 Phys. Rev. B 73 132104
[31] Gou H Y, Hou L, Zhang J W and Gao F M 2008 Appl. Phys. Lett. 92 241901
[32] Born M 1940 Math. Proc. Camb. Philos. Soc. 36 160
[33] Pugh S F 1954 Philos. Mag. 45 823
[34] Frantsevich I N, Voronov F F and Bokuta S A 1983 Elastic constants and elastic moduli of metals and insulators handbook (Kiev: Naukova Dumka) pp. 60-180
[35] Ching W Y, Mo Y, Aryal S, and Rulis P 2013 J. Am. Ceram. Soc. 96 2292
[36] Hadi M A, Roknuzzaman M, Parvin F, Naqib S H, Islam A K M A and Aftabuzzaman M 2014 J. Sci. Res. 6 11
[37] Nasir M T, Hadi M A, Naqib S H, Parvin F, Islam A K M A, Roknuzzaman M and Ali M S 2014 Int. J. Mod. Phys. B 28 1550022
[38] Ravindran P, Fast L, Korzhavyi P A, Johansson B, Wills J and Eriksson O 1998 J. Appl. Phys. 84 4891
[39] Li C, Wang B, Li Y and Wang R 2009 J. Phys. D: Appl. Phys. 42 065407
[40] Hadi M A, Ali M S, Naqib S H and Islam A K M A 2013 Int. J. Comp. Mater. Sci. Eng. 2 1350007
[41] UPAC 1997 Compendium of Chemical Technology, 2nd edn. (the “Gold Book”), 2006 online corrected version
[1] Structural, mechanical, electronic properties, and Debye temperature of quaternary carbide Ti3NiAl2C ceramics under high pressure: A first-principles study
Diyou Jiang(姜迪友), Wenbo Xiao(肖文波), and Sanqiu Liu(刘三秋). Chin. Phys. B, 2021, 30(3): 036202.
[2] Thermodynamic properties of ZnSe under pressure and with variation in temperature
Najm Ul Aarifeen, A Afaq. Chin. Phys. B, 2017, 26(9): 093105.
[3] Effects of temperature and pressure on thermodynamic properties of Cd0.25Zn0.75 alloy
Najm Ul Aarifeen, A Afaq. Chin. Phys. B, 2017, 26(12): 123103.
[4] Electronic structures of efficient MBiO3 (M = Li, Na, K, Ag) photocatalyst
Wen-Liu Zhou(周文流), Zong-Yan Zhao(赵宗彦). Chin. Phys. B, 2016, 25(3): 037102.
[5] Mechanical and thermodynamic properties of the monoclinic and orthorhombic phases of SiC2N4 under high pressure from first principles
Miao Nan-Xi (苗楠茜), Pu Chun-Ying (濮春英), He Chao-Zheng (何朝政), Zhang Fei-Wu (张飞武), Lu Cheng (卢成), Lu Zhi-Wen (卢志文), Zhou Da-Wei (周大伟). Chin. Phys. B, 2014, 23(12): 127101.
[6] Theoretical investigation on the electronic structure, elastic properties, and intrinsic hardness of Si2N2O
Ding Ying-Chun(丁迎春), Chen Min(陈敏), Gao Xiu-Ying(高秀英), and Jiang Meng-Heng(蒋孟衡) . Chin. Phys. B, 2012, 21(6): 067101.
[7] Effects of O defects on adsorption of small Ag clusters on a MgO(001) surface
Deng Yong-He(邓永和). Chin. Phys. B, 2010, 19(1): 017301.
[8] Pseudo-potential investigations of structural, elastic and thermal properties of tungsten disilicide
Xu Guo-Liang(徐国亮), Chen Jing-Dong(陈敬东), Xia Yao-Zheng(夏要争), and Liu Xue-Feng(刘雪峰). Chin. Phys. B, 2009, 18(8): 3495-3499.
[9] First-principles calculations of elasticity and thermodynamic properties of LaNi5 crystal under pressure
Chen Dong(陈东), Chen Jing-Dong(陈敬东), Zhao Li-Hua(赵丽华), Wang Chun-Lei(王春雷), Yu Ben-Hai(余本海), and Shi De-Heng(施德恒). Chin. Phys. B, 2009, 18(2): 738-743.
[10] First-principles calculation of elastic and thermodynamic properties of Ni2MnGa Heusler alloy
Xu Guo-Liang(徐国亮), Chen Jing-Dong(陈敬东), Chen Dong(陈东), Ma Jian-Zhong(马建忠), Yu Ben-Hai(余本海), and Shi De-Heng(施德恒). Chin. Phys. B, 2009, 18(2): 744-748.
No Suggested Reading articles found!