Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(9): 098601    DOI: 10.1088/1674-1056/19/9/098601
CROSS DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Effect of slow-solvent-vapour treatment on performance of polymer photovoltaic devices

Feng Zhi-Hui(冯志慧), Hou Yan-Bing(侯延冰), Shi Quan-Min(师全民), Liu Xiao-Jun(刘小君), and Teng Feng(滕枫)
Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044, China
Abstract  In this work, enhanced poly(3-hexylthiophene):[6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PCBM) bulk-heterojunction photovoltaic devices are achieved via slow-solvent-vapour treatment. The correlations between the morphology of the active layer and the photovoltaic performance of polymer-based solar cell are investigated. The active layers are characterized by atomic force microscopy and optical absorption. The results show that slow-solvent-vapour treatment can induce P3HT self-organization into an ordered structure, leading to the enhanced absorption and efficient charge transport.
Keywords:  polymer solar cell      solvent-vapour treatment      self-organization  
Received:  02 February 2010      Revised:  01 April 2010      Accepted manuscript online: 
PACS:  8630J  
  6855  
  4270  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 60978061, 60777026, 60677007 and 60825407), the Program for New Century Excellent Talents in University (Grant No. NCET-08-0717), the Beijing Municipal Science and Technology Commission (Grant Nos. Z090803044009001 and 4102046), and the Program of Introducing Talents of Discipline to Universities, China (Grant No. B08002).

Cite this article: 

Feng Zhi-Hui(冯志慧), Hou Yan-Bing(侯延冰), Shi Quan-Min(师全民), Liu Xiao-Jun(刘小君), and Teng Feng(滕枫) Effect of slow-solvent-vapour treatment on performance of polymer photovoltaic devices 2010 Chin. Phys. B 19 098601

[1] Sun S S and Sariciftci N S 2005 Organic Photovoltaics: Mechanisms, Materials, and Devices (Boca Raton, FL: CRC Press) chap. 4
[2] Chen H Y, Hou J H, Zhang S Q, Liang Y Y, Yang G W, Yang Y, Yu L P, Wu Y and Li G 2009 Nature Photon. 3 649
[3] Li G, Shrotriya V, Huang J, Yao Y, Moriarty T, Emery K and Yang Y 2005 Nature Mater. 4 864
[4] Kim Y, Cook S, Tuladhar S M, Choulis S A, Nelson J, Durrant J R, Bradley D D C, Giles M, McCulloch I, Ha C S and Ree M 2006 Nature Mater. 5 197
[5] Li G, Shrotriya V, Yao Y and Yang Y 2005 J. Appl. Phys. 98 043704
[6] Hoppe H and Sariciftci N S 2006 J. Mater. Chem. 16 45
[7] Padinger F, Rittberger R S and Sariciftci N S 2003 Adv. Funct. Mater. 13 85
[8] Kim Y, Choulis S A, Nelson J, Bradley D D C, Cook S and Durrant J R 2005 Appl. Phys. Lett. 86 063502
[9] Chirvase D, Parisi J, Hummelen J C and Dyakonov V 2004 Nanotechnology 15 1317
[10] You H L and Zhang C F 2009 Chin. Phys. B 18 2096
[11] Yu G, Gao J, Hummelen J C, Wudl F and Heeger A J 1995 Science 270 1789
[12] Shaheen S E, Brabec C J and Sariciftci N S 2001 Appl. Phys. Lett. 78 841
[13] Vanlaeke P, Vanhoyland G, Aernouts T, Cheyns D, Deibel C, Manca J, Heremans P and Poortmans J 2006 Thin Solid Films 511--512 358
[14] Mihailetchi V D, Xie H X, de Boer B, Popescu L M, Hummelen J C and Blom P W M 2006 Appl. Phys. Lett. 89 012107
[15] Kim K, Liu J and Carroll D L 2006 Appl. Phys. Lett. 88 181911
[16] Zhao Y, Xie Z Y, Qu Y, Geng Y H and Wang L X 2007 Appl. Phys. Lett. 90 043504
[17] Guo T F, Wen T C, Pakhomov G L, Chin X G, Liou S H, Yeh P H and Yang C H 2008 Thin Solid Films 516 3138
[18] Jo J, Na S I, Kim S S, Lee T W, Chung Y S, Kang S J, Vak D and Kim D Y 2009 Adv. Funct. Mater. 19 2398
[19] Li G, Shrotriya V, Yao Y, Huang J S and Yang Y 2007 J. Mater. Chem. 17 3126
[20] Yang X N and Loos J 2007 Macromolecules 40 1353
[21] Kawano K, Sakai J, Yahiro M and Adachi C 2009 Sol. Energy Mater. Sol. Cells 93 514
[22] Yu H Z, and Peng J B 2008 Chin. Phys. B 17 3143
[23] Chen L M, Hong Z R, Li G and Yang Y 2009 Adv. Mater. 21 1434
[24] Yang X N, Loos J, Veenstra S C, Verhees W J H, Wienk M M, Kroon J M, Michels M A J and Janssen R A J 2005 Nano Lett. 5 579 endfootnotesize
[1] Inertial focusing and rotating characteristics of elliptical and rectangular particle pairs in channel flow
Pei-Feng Lin(林培锋), Xiao Hu(胡箫), and Jian-Zhong Lin(林建忠). Chin. Phys. B, 2022, 31(8): 080501.
[2] Self-assembled monolayer modified copper(I) iodide hole transport layer for efficient polymer solar cells
Yuancong Zhong(钟远聪), Qilun Zhang(张琪伦), You Wei(魏优), Qi Li(李琦), Yong Zhang(章勇). Chin. Phys. B, 2018, 27(7): 078802.
[3] Inverted organic solar cells with solvothermal synthesized vanadium-doped TiO2 thin films as efficient electron transport layer
Mehdi Ahmadi, Sajjad Rashidi Dafeh, Samaneh Ghazanfarpour, Mohammad Khanzadeh. Chin. Phys. B, 2017, 26(9): 097203.
[4] Collective motion of active particles in environmental noise
Qiu-shi Chen(陈秋实), Ming Ji(季铭). Chin. Phys. B, 2017, 26(9): 098903.
[5] Fullerene solar cells with cholesteric liquid crystal doping
Lulu Jiang(姜璐璐), Yurong Jiang(蒋玉荣), Congcong Zhang(张丛丛), Zezhang Chen(陈泽章), Ruiping Qin(秦瑞平), Heng Ma(马恒). Chin. Phys. B, 2016, 25(9): 098401.
[6] Sodium chloride methanol solution spin-coating process for bulk-heterojunction polymer solar cells
Tong-Fang Liu(刘统方), Yu-Feng Hu(胡煜峰), Zhen-Bo Deng(邓振波), Xiong Li(李熊), Li-Jie Zhu(朱丽杰), Yue Wang(王越), Long-Feng Lv(吕龙锋), Tie-Ning Wang(王铁宁), Zhi-Dong Lou(娄志东), Yan-Bing Hou(侯延冰), Feng Teng(滕枫). Chin. Phys. B, 2016, 25(8): 088801.
[7] Inverted polymer solar cells with employing of electrochemical-anodizing synthesized TiO2 nanotubes
Mehdi Ahmadi, Sajjad Rashidi Dafeh, Hamed Fatehy. Chin. Phys. B, 2016, 25(4): 047201.
[8] Improved performance of polymer solar cells by using inorganic, organic, and doped cathode buffer layers
Taohong Wang(王桃红), Changbo Chen(陈长博), Kunping Guo(郭坤平), Guo Chen(陈果), Tao Xu(徐韬), Bin Wei(魏斌). Chin. Phys. B, 2016, 25(3): 038402.
[9] Nano structure evolution in P3HT:PC61BM blend films due to the effects of thermal annealing or by adding solvent
Fan Xing (樊星), Zhao Su-Ling (赵谡玲), Chen Yu (陈雨), Zhang Jie (张杰), Yang Qian-Qian (杨倩倩), Gong Wei (龚伟), Yuan Meng-Yao (苑梦尧), Xu Zheng (徐征), Xu Xu-Rong (徐叙瑢). Chin. Phys. B, 2015, 24(7): 078401.
[10] The enhancement of 21.2%-power conversion efficiency in polymer photovoltaic cells by using mixed Au nanoparticles with a wide absorption spectrum of 400 nm-1000 nm
Hao Jing-Yu (郝敬昱), Xu Ying (徐颖), Zhang Yu-Pei (张玉佩), Chen Shu-Fen (陈淑芬), Li Xing-Ao (李兴鳌), Wang Lian-Hui (汪联辉), Huang Wei (黄维). Chin. Phys. B, 2015, 24(4): 045201.
[11] Photoactive area modification in bulk heterojunctionorganic solar cells using optimization of electrochemicallysynthesized ZnO nanorods
Mehdi Ahmadi, Sajjad Rashidi Dafeh. Chin. Phys. B, 2015, 24(11): 117203.
[12] Improved performance of P3HT:PCBM solar cells by both anode modification and short-wavelength energy utilization using Tb(aca)3phen
Zhuo Zu-Liang (卓祖亮), Wang Yong-Sheng (王永生), He Da-Wei (何大伟), Fu Ming (富鸣). Chin. Phys. B, 2014, 23(9): 098802.
[13] MoO3/Ag/Al/ZnO intermediate layer for inverted tandem polymer solar cells
Qing Jian (卿健), Zhong Zhen-Feng (钟镇锋), Liu Yong (刘勇), Li Bao-Jun (李宝军), Zhou Xiang (周翔). Chin. Phys. B, 2014, 23(3): 038802.
[14] Effects of acetone-soaking treatment on the performance of polymer solar cells based on P3HT/PCBM bulk heterojunction
Liu Yu-Xuan (刘宇譞), Lü Long-Feng (吕龙峰), Ning Yu (宁宇), Lu Yun-Zhang (陆运章), Lu Qi-Peng (鲁启鹏), Zhang Chun-Mei (张春梅), Fang Yi (方一), Tang Ai-Wei (唐爱伟), Hu Yu-Feng (胡煜峰), Lou Zhi-Dong (娄志东), Teng Feng (滕枫), Hou Yan-Bing (侯延冰). Chin. Phys. B, 2014, 23(11): 118802.
[15] Density behaviors of Ge nanodots self-assembled by ion beam sputtering deposition
Xiong Fei (熊飞), Yang Tao (杨涛), Song Zhao-Ning (宋肇宁), Yang Pei-Zhi (杨培志). Chin. Phys. B, 2013, 22(5): 058104.
No Suggested Reading articles found!