Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(9): 096101    DOI: 10.1088/1674-1056/25/9/096101
Special Issue: TOPICAL REVIEW — Physical research in liquid crystal
TOPICAL REVIEW—Physical research in liquid crystal Prev   Next  

Research progress of cholesteric liquid crystals with broadband reflection characteristics in application of intelligent optical modulation materials

Lan-Ying Zhang(张兰英)1,3, Yan-Zi Gao(高延子)1, Ping Song(宋平)1, Xiao-Juan Wu(武晓娟)2, Xiao Yuan(苑晓)1, Bao-Feng He(何宝凤)1, Xing-Wu Chen(陈兴武)2, Wang Hu(胡望)2, Ren-Wei Guo(郭仁炜)2, Hang-Jun Ding(丁杭军)2, Jiu-Mei Xiao(肖久梅)2, Huai Yang(杨槐)1,2,3
1. Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China;
2. Department of Materials Physics and Chemistry, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China;
3. Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing 100871, China
Abstract  

Cholesteric liquid crystals (CLCs) have recently sparked an enormous amount of interest in the development of soft matter materials due to their unique ability to self-organize into a helical supra-molecular architecture and their excellent selective reflection of light based on the Bragg relationship. Nowadays, by the virtue of building the self-organized nanostructures with pitch gradient or non-uniform pitch distribution, extensive work has already been performed to obtain CLC films with a broad reflection band. Based on authors' many years' research experience, this critical review systematically summarizes the physical and optical background of the CLCs with broadband reflection characteristics, methods to obtain broadband reflection of CLCs, as well as the application in the field of intelligent optical modulation materials. Combined with the research status and the advantages in the field, the important basic and applied scientific problems in the research direction are also introduced.

Keywords:  cholesteric liquid crystals      soft matter materials      broadband reflection characteristics      intelligent optical modulation materials  
Received:  19 May 2016      Accepted manuscript online: 
PACS:  61.30.-v (Liquid crystals)  
  61.30.Pq (Microconfined liquid crystals: droplets, cylinders, randomly confined liquid crystals, polymer dispersed liquid crystals, and porous systems)  
  78.15.+e (Optical properties of fluid materials, supercritical fluids and liquid crystals)  
  83.80.Xz (Liquid crystals: nematic, cholesteric, smectic, discotic, etc.)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 51573006, 51573003, 51203003, 51303008, 51302006, 51402006, 51272026, and 51273022), the Major Project of Beijing Science and Technology Program, China (Grant Nos. Z151100003315023 and Z141100003814011), and the Fok Ying Tung Education Foundation, China (Grant No. 142009).

Corresponding Authors:  Huai Yang     E-mail:  yanghuai@pku.edu.cn

Cite this article: 

Lan-Ying Zhang(张兰英), Yan-Zi Gao(高延子), Ping Song(宋平), Xiao-Juan Wu(武晓娟), Xiao Yuan(苑晓), Bao-Feng He(何宝凤), Xing-Wu Chen(陈兴武), Wang Hu(胡望), Ren-Wei Guo(郭仁炜), Hang-Jun Ding(丁杭军), Jiu-Mei Xiao(肖久梅), Huai Yang(杨槐) Research progress of cholesteric liquid crystals with broadband reflection characteristics in application of intelligent optical modulation materials 2016 Chin. Phys. B 25 096101

[1] Kelker H 1973 Mol. Cryst. Liq. Cryst. 21 1
[2] Reinitzer F 1888 Monatsh. Chem. 9 421
[3] Demus D, Goodby J, Gray G W, Spiess H W and Vill V (Eds.) 1998 Handbook of Liquid Crystals (Weinheim: VCH) Vol. 2A p. 47
[4] Mandle R J, Bevis E and Goodby J W 2014 Phase Structures of Nematic Liquid Crystals (Wiley-VCH Verlag GmbH & Co. KGaA)
[5] Tamaoki N, Purfenov A V, Masaki A and Matsuda H 1997 Adv. Mater. 9 1102
[6] Liu L M, Zhang B Y, Cheng C S and Zheng Y Y 2004 J. Appl. Polym. Sci. 91 773
[7] Ogawa H, Stibal-Fischer E and Finkelmann H 2004 Macromol. Chem. Phys. 205 593
[8] Yang D K, Chien L C and Doane J W 1992 Appl. Phys. Lett. 60 3102
[9] Hiji N, Kakinuma T, Araki M, Hikichi Y, Kobayashi H and Yamamoto S 2005 SID Symposium Digest of Technical Papers 36 1560
[10] Chen G, Wang L, Wang Q, Sun J, Song P, Chen X W, Liu X, Guan S H, Zhang X G, Wang L P, Yang H and Yu H F 2014 ACS Appl. Mater. Interfaces 6 1380
[11] Wu R N, Wu J, Wu X J and Dai Q 2015 Chin. Phys. B 24 054211
[12] Ma J, Zheng Z G, Liu Y G and Xuan L 2011 Chin. Phys. B 20 024212
[13] Dreher R, Meier G and Saupe A 1971 Mol. Cryst. Liq. Cryst. 13 17
[14] Michel M 2012 Adv. Mater. 24 6260
[15] Day G W and Gaddy O L 1968 Proc. IEEE 56 1113
[16] Saeva F D and Wysocki J J 1971 J. Am. Chem. Soc. 93 5928
[17] Chilaya G 2001 Chirality in Liquid Crystals, Chapter: Cholesteric Liquid Crystals: Optics, Electro-optics, and Photo-optics (New York: Springer) pp. 159-185
[18] Blinov L M 2011 Electro-optical Effects in Cholesteric Liquid Crystals. Structure and Properties of Liquid Crystals (Netherlands: Springer) 123 pp. 343-379
[19] Smith R, Sabatino D R and Praisner T J 2001 Exp. Fluids 30 190
[20] Wu S T and Yang D K 2001 Reflective Liquid Crystal Displays (Chichester: John Wiley & Sons Ltd.)
[21] Palto S P, Blinov L M, Barnik M I, Lazarev V V, Umanskii B A and Shtykov N M 2011 Crystallogr. Rep. 56 622
[22] Schlichting W, Faris S M, Li L, Fan B and Kralik J C 1996 Proc. SPIE 2690 232
[23] Du F, Lu Y Q, Ren H W, Gauza S and Wu S T 2004 Jpn. J. Appl. Phys. 43 7083
[24] Saito M, Maruyama A and Fujiwara J 2015 Opt. Mater. Express 5 1588
[25] Meier G, Grabmaier J G and Sackmann E 1975 Applications of Liquid Crystals (Berlin: Springer Verlag) pp. 9-11
[26] Tamaoki N 2001 Adv. Mater. 13 1135
[27] Yang D K, Shi L and Bao R 2014 US patent 8913215 B2[P]
[28] Woltman S J, Jay G D and Crawford G P 2007 Liquid Crystals (Singapore: World Scientific)
[29] Mitov M, Boudet A and Sopena P 1999 Eur. Phys. J. B 8 327
[30] Gauza S, Wen C H, Wu S T, Janarthanan N and Hsu C S 2004 Jpn. J. Appl. Phys. 43 7634
[31] Hird M, Toyne K J, Goodby J W, Gray G W, Minter V, Tuffin R P and McDonnell D G J 2004 Mater. Chem. 14 1731
[32] Seed A J, Toyne K J, Goodby J W and Hird M J 2000 Mater. Chem. 10 2069
[33] Guan X L, Zhang L Y, Zhang Z L, Shen Z H, Chen X F, Fan X H and Zhou Q F 2009 Tetrahedron 65 3728
[34] Miao Z C, Wang D, Zhang Y M, Jin Z K, Liu F, Wang F F and Huai Yang 2012 Liq. Cryst. 39 1291
[35] Kralik J C, Fan B, Vithana H, Li L and Faris S M 1997 Mol. Cryst. Liq. Cryst. 301 249
[36] Huang Y H, Zhou Y and Wu S T 2007 Opt. Express 15 6414
[37] Boudet A, Binet C, Mitov M, Bourgerette C and Boucher E 2000 Eur. Phys. J. E 2 247
[38] Binet C, Mitov M and Boudet A 2000 Mol. Cryst. Liq. Cryst. 339 111
[39] Mitov M, Binet C, Boudet A and Bourgerette C 2001 Mol. Cryst. Liq. Cryst. 358 209
[40] Zografopoulos D C, Kriezis E E, Mitov M and Binet C 2006 Phys. Rev. E 73 061701
[41] Belalia M, Mitov M, Bourgerette C, Krallafa A, Belhakem M and Bormann D 2006 Phys. Rev. E 74 051704
[42] Gao Y Z, Yao W H, Sun J, Zhang H M, Wang Z D, Wang L, Yang D K, Zhang L Y and Yang H 2015 J. Mater. Chem. A 3 10738
[43] Broer D J, Lub J and Mol G N 1995 Nature 378 467
[44] Sixou P, Gautier C and Guillard H 2001 Mol. Cryst. Liq. Cryst. 364 665
[45] Sixou P and Gautier C 2002 Polym. Adv. Technol. 13 329
[46] Bian Z Y, Li K X, Huang W, Cao H and Yang H 2007 Appl. Phys. Lett. 91 201908
[47] Li L and Fans S M 1997 US Patent 5691789
[48] Li L, Li J F, Fan B, Jiang Y Q and Fans Sadeg M 1998 Proc. SPIE 3560 33
[49] Li L and Faris S M 1996 Proc. SPIE 2873 202
[50] Witte P V D, Brehmer M and Lub J 1999 J. Mater. Chem. 9 2087
[51] Chen X W, Wang L, Chen Y J, Li C Y, Hou G Y, Liu X, Zhang X G, He W L and Yang H 2014 Chem. Commun. 50 691
[52] Yang H, Mishima K, Matsuyama K, and Hayashi K I, Kikuchi H and Kajiyama T 2003 , Appl. Phys. Lett. 82 2047
[53] Guo R W, Li K X, Cao H, Wu X J, Wang G J, Cheng Z H, Wang F F, Zhang H Q and Yang H 2010 Polymer 51 5990
[54] Guo R W, Cao H, Yang C Y, Wu X J, Meng Q Y, Liu T, He W L, Cheng Z H and Yang H 2010 Liq. Cryst. 37 311
[55] Yuan X T, Gong A J and Yang H 2013 Chin. J. Liq. Cryst. Display 28 155
[56] Li K X, Cao H, Cheng Z H, Zhang L P, Wu X J, Yang H and Shen Z S 2012 Chin. J. Liq. Cryst. Display 27 724 (in Chinese)
[57] Wu X J, Cao H, Guo R W, Li K X, Wang F F, Gao Y Z, Yao W H, Zhang L Y, Chen X F and Yang H 2012 Macromolecules 45 5556
[58] Wu X J, Yu L L, Cao H, Guo R W, Li K X, Cheng Z H, Wang F F, Yang Z and Yang H 2011 Polymer 52 5836
[59] Wu X J, Cao H, Guo R W, Li K X, Wang F F and Yang H 2013 Polym. Adv. Technol. 24 228
[60] Meyer R B 1968 Appl. Phy. Lett. 12 281
[61] Ribiere P, Pirkl S and Oswald P 1991 Phys. Rev. A 44 8198
[62] Hikmet R A M and Kemperman H 1998 Nature 392 476
[63] Hu W, Zhao H Y, Song L, Yang Z, Cao H, Cheng Z H, Liu Q and Yang H 2010 Adv. Mater. 22 468
[64] Hu W, Zhang L P, Cao H, Song L, Zhao H Y, Yang Z, Cheng Z H, Yang H and Guo L 2010 Phys. Chem. Chem. Phys. 12 2632
[65] Hanel R A, Schlachman B, Rogers D and Vanous D 1971 Appl. Opt. 10 1376
[66] Hinteregger H E 1965 Space Sci. Rev. 4 461
[67] Li L 1998 Energy Saving Smart Window Technology Using Cholesteric Liquid Crystals (Final Progress Report to New York State Energy Research Authority)
[68] Faris S M and Li L 2004 Coloring media having improved brightness and color characteristics Reveo, Thomas J Perkowski Esq PC, Ralph J Crispino, US06753044
[69] Wang M, Zhang L P, Wang L and Yang H 2016 , Liq. Cryst. 43 750
[1] Influences of nanoparticles and chain length on thermodynamic and electrical behavior of fluorine liquid crystals
Ines Ben Amor, Lotfi Saadaoui, Abdulaziz N. Alharbi, Talal M. Althagafi, and Taoufik Soltani. Chin. Phys. B, 2022, 31(10): 104202.
[2] Stability of liquid crystal systems doped with γ-Fe2O3 nanoparticles
Xu Zhang(张旭), Ningning Liu(刘宁宁), Zongyuan Tang(唐宗元), Yingning Miao(缪应宁), Xiangshen Meng(孟祥申), Zhenghong He(何正红), Jian Li(李建), Minglei Cai(蔡明雷), Tongzhou Zhao(赵桐州), Changyong Yang(杨长勇), Hongyu Xing(邢红玉), and Wenjiang Ye(叶文江). Chin. Phys. B, 2021, 30(9): 096101.
[3] Azobenzene mesogens mediated preparation of SnS nanocrystals encapsulated with in-situ N-doped carbon and their enhanced electrochemical performance for lithium ion batteries application
Meng Wang(王勐), Yang Zhou(周旸), Junfei Duan(段军飞), Dongzhong Chen(谌东中). Chin. Phys. B, 2016, 25(9): 096102.
[4] A model of crack based on dislocations in smectic A liquid crystals
Fan Tian-You (范天佑), Tang Zhi-Yi (唐志毅). Chin. Phys. B, 2014, 23(10): 106103.
[5] The stress field and energy of screw dislocation in smectic A liquid crystals and the mistakes of the classical solution
Fan Tian-You (范天佑), Li Xian-Fang (李显方). Chin. Phys. B, 2014, 23(4): 046102.
[6] Monte Carlo simulations of biaxial structure in thin hybrid nematic film based upon spatially anisotropic pair potential
Zhang Zhi-Dong(张志东), Chang Chun-Rui(常春蕊), and Ma Dong-Lai(马东来). Chin. Phys. B, 2009, 18(4): 1560-1563.
[7] Threshold property of a nematic liquid crystal cell with two grating surface substrates
Ye Wen-Jiang(叶文江), Xing Hong-Yu(邢红玉), Yang Guo-Chen(杨国琛), and Yuan Meng-Yao(苑梦尧). Chin. Phys. B, 2009, 18(1): 238-245.
[8] ON THE SATURATION BEHAVIOUR OF TWISTED NEMATIC LIQUID CRYSTAL CELLS WITH A NONZERO PRETILT ANGLE
Zhang Zhi-dong (张志东), Yu Hui (于慧), Li Li (李丽). Chin. Phys. B, 2001, 10(7): 645-649.
[9] THE WIDTH EFFECT OF ELECTRODE IN THE FREEDERICKSZ TRANSITION OF NEMATIC LIQUID CRYSTALS
WANG CUN-DAO (王存道), YANG GUO-CHEN (杨国琛). Chin. Phys. B, 1997, 6(6): 422-428.
No Suggested Reading articles found!