CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
A facile and efficient dry transfer technique for two-dimensional Van der Waals heterostructure |
Li Xie(谢立)1,2, Luojun Du(杜罗军)1, Xiaobo Lu(卢晓波)1,2, Rong Yang(杨蓉)1,2, Dongxia Shi(时东霞)1,2, Guangyu Zhang(张广宇)1,2,3,4 |
1 Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences (CAS), Beijing 100190, China;
2 School of Physical Science, University of Chinese Academy of Sciences, Beijing 100190, China;
3 Collaborative Innovation Center of Quantum Matter, Beijing 100190, China;
4 Beijing Key Laboratory for Nanomaterials and Nanodevices, Beijing 100190, China |
|
|
Abstract Two-dimensional (2D) Van der Waals heterostructures have aroused extensive concerns in recent years. Their fabrication calls for facile and efficient transfer techniques for achieving well-defined structures. In this work, we report a simple and effective dry transfer method to fabricate 2D heterostructures with a clean interface. Using Propylene Carbonate (PC) films as stamps, we are able to pick up various 2D materials flakes from the substrates and unload them to the receiving substrates at an elevated temperature. Various multilayer heterostructures with ultra-clean interfaces were fabricated by this technique. Furthermore, the 2D materials can be pre-patterned before transfer so as to fabricate desired device structures, demonstrating a facile way to promote the development of 2D heterostructures.
|
Received: 05 April 2017
Revised: 04 May 2017
Accepted manuscript online:
|
PACS:
|
73.43.Fj
|
(Novel experimental methods; measurements)
|
|
73.50.-h
|
(Electronic transport phenomena in thin films)
|
|
68.65.-k
|
(Low-dimensional, mesoscopic, nanoscale and other related systems: structure and nonelectronic properties)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant Nos. 2013CB934500 and 2013CBA01602), the National Natural Science Foundation of China (Grant Nos. 61325021, 11574361, and 51572289), the Key Research Program of Frontier Sciences, CAS, (Grant No. QYZDB-SSW-SLH004), and the Strategic Priority Research Program (B), CAS (Grant No. XDB07010100). |
Corresponding Authors:
Rong Yang, Guangyu Zhang
E-mail: ryang@iphy.ac.cn;gyzhang@iphy.ac.cn
|
About author: 0.1088/1674-1056/26/8/ |
Cite this article:
Li Xie(谢立), Luojun Du(杜罗军), Xiaobo Lu(卢晓波), Rong Yang(杨蓉), Dongxia Shi(时东霞), Guangyu Zhang(张广宇) A facile and efficient dry transfer technique for two-dimensional Van der Waals heterostructure 2017 Chin. Phys. B 26 087306
|
[1] |
Yu W J, Li Z, Zhou H L, Chen Y, Wang Y, Huang Y and Duan X F 2013 Nat. Mater. 12 246
|
[2] |
Gong Y J, Lin J H, Wang X L, Shi G, Lei S D, Lin Z, Zou X L, Ye G L, Vajtai R, Yakobson B I, Terrones H, Tay B K, Lou J, Pantelides S T, Liu Z, Zhou W and Ajayan P M 2014 Nat. Mater. 13 1135
|
[3] |
Liu Y, Weiss N O, Duan X D, Cheng H C, Huang Y and Duan X F 2016 Nat. Rev. Mater. 1 16042
|
[4] |
Chiu M H, Zhang C D, Shiu H W, Chuu C P, Chen C Y, Chang C Y S, Chen C H, Chou M Y, Shih C K and Li L J 2015 Nat. Commun. 6 7666
|
[5] |
Kośmider K and Fernández-Rossier J 2013 Phys. Rev. B 87
|
[6] |
Li X S, Zhu Y W, Cai W W, Borysiak M, Han B Y, Chen D, Piner R D, Colomb L and Ruff R S 2009 Nano Lett. 9 4359
|
[7] |
Gao L B, Ni G X, Liu Y P, Liu B, Neto A H C and Loh K P 2014 Nature 505 190
|
[8] |
Elias A L, Perea-Lpez N, Castro-Beltrán A, Berkdemir A, Lv R, Feng S M, Long A D, Hayashi T, Kim Y A, Endo M, Gutiérrez H R, Pradhan N R, Balicas L, Mallourk T L, Lpez-Urías F, Terrones H and Terrones M 2014 ACS Nano 7 5235
|
[9] |
Chen X D, Li Z B, Zheng C Y, Xing F, Yan X Q, Chen Y S and Tian J G 2013 Carbon 56 271
|
[10] |
Reina A, Son H, Jiao L Y, Fan B, Dresselhaus M S, Liu Z F and Kong J 2008 J. Phys. Chem. Lett. 112 17741
|
[11] |
Her M, Beams R and Novotny L 2013 Phys. Lett. A 377 1455
|
[12] |
Lee C H, McCulloch W, Lee II E W, Ma L, Krishnamoorthy S, Hwang J, Wu Y Y and Rajan S 2015 Appl. Phys. Lett. 107 193503
|
[13] |
Schneider G F, Calado V E, Zandbergen H, Vandersypen L M and Dekker C 2010 Nano Lett. 10 1912
|
[14] |
Gurarslan A, Yu Y F, Su L Q, Yu Y L, Suarez F, Yao S S, Zhu Y, Ozturk M, Zhang Y and Cao L Y 2014 ACS Nano 8 11522
|
[15] |
Li H, Wu J, Huang X, Yin Z, Liu J and Zhang H 2014 ACS Nano 8 6563
|
[16] |
Ma D L, Shi J P, Ji Q Q, Chen K, Yin J B, Lin Y W, Zhang Y, Liu M X, Feng Q L, Song X J, Guo X F, Zhang J, Zhang Y F and Liu Z F 2015 Nano Res. 8 3662
|
[17] |
Zhang J, Wang J H, Chen P, Sun Y, Wu S, Jia Z Y, Lu X B, Yu H H, Chen W, Zhu J Q, Xie G B, Yang R, Shi D X, Xu X L, Xiang J Y, Liu K H and Zhang G Y 2016 Adv. Mater. 28 1950
|
[18] |
Zoomer P J, Dash S P, Tombros N and Wees B J 2011 Appl. Phys. Lett. 99 232104
|
[19] |
Castellanos-Gomez A, Buscema M, Molenaar R, Singh V, Janssen L, Herre S J, van der Zant and Steele G A 2014 2D Materials 1 011002
|
[20] |
Wang L, Meric I, Huang P, Gao Q, Gao Y, Tran H, Taniguchi T, Watanabe K, Campos L and Muller D 2013 Science 342 614
|
[21] |
Kwak J Y, Hwang J, Calderon B, Alsalman H, Munoz N, Schutter B and Spencer M G 2014 Nano Lett. 14 4511
|
[22] |
Yu H, Yang Z Z, Du L J, Zhang J, Shi J N, Chen W, Chen P, Liao M Z, Zhao J, Meng J L, Wang G L, Zhu J Q, Yang R, Shi D X and Zhang G Y 2017 Small 13
|
[23] |
Zhao J, Yu H, Chen W, Yang R, Zhu J Q, Liao M Z, Shi D X and Zhang G Y 2016 ACS Appl. Mater. Interfaces 8 16546
|
[24] |
Zhang J, Yu H, Chen W, Tian X Z, Liu D H, Cheng M, Xie G B, Yang W, Yang R, Bai X D, Shi D X and Zhang G Y 2014 ACS Nano 8 6024
|
[25] |
Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Nat. Nanotechnol. 6 147
|
[26] |
Lee H S, Min S W, Park M K, Lee Y T, Jeon J, Kim J H, Ryu S and Lm S 2012 Small 8 3111
|
[27] |
Radisavljevic B, Whitwick M B and Kis A 2011 ACS Nano 5 9934
|
[28] |
Xu K, Chen D X, Yang F Y, Wang Z X, Yin L, Wang F, Cheng R Q, Liu K H, Xiong J, Liu Q and He J 2017 Nano Lett. 17 1065
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|