Design of tunable surface mode waveguide based on photonic crystal composite structure using organic liquid
Lan-Lan Zhang(张兰兰)1, Wei Liu(刘伟)1, Ping Li(李萍)1, Xi Yang(杨曦)1, Xu Cao(曹旭)2
1 School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang 471000, China; 2 Basic Teaching and Research Section, People's Liberation Army Rocket Force 96520, Luoyang 471000, China
Abstract With the method of replacing the surface layer of photonic crystal with tubes, a novel photonic crystal composite structure used as a tunable surface mode waveguide is designed. The tubes support tunable surface states. The tunable propagation capabilities of the structure are investigated by using the finite-difference time-domain. Simulation results show that the beam transmission distributions of the composite structure are sensitive to the frequency range of incident light and the surface morphology which can be modified by filling the tubes with different organic liquids. By adjusting the filler in tubes, the T-shaped, Y-shaped, and L-shaped propagations can be realized. The property can be applied to the tunable surface mode waveguide. Compared with a traditional single function photonic crystal waveguide, our designed structure not only has a small size, but also is a tunable device.
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 31401136) and the School Youth Fund of Henan University of Science and Technology, China (Grant No. 2014QN045).
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.