Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(6): 064209    DOI: 10.1088/1674-1056/26/6/064209
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Design of tunable surface mode waveguide based on photonic crystal composite structure using organic liquid

Lan-Lan Zhang(张兰兰)1, Wei Liu(刘伟)1, Ping Li(李萍)1, Xi Yang(杨曦)1, Xu Cao(曹旭)2
1 School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang 471000, China;
2 Basic Teaching and Research Section, People's Liberation Army Rocket Force 96520, Luoyang 471000, China
Abstract  With the method of replacing the surface layer of photonic crystal with tubes, a novel photonic crystal composite structure used as a tunable surface mode waveguide is designed. The tubes support tunable surface states. The tunable propagation capabilities of the structure are investigated by using the finite-difference time-domain. Simulation results show that the beam transmission distributions of the composite structure are sensitive to the frequency range of incident light and the surface morphology which can be modified by filling the tubes with different organic liquids. By adjusting the filler in tubes, the T-shaped, Y-shaped, and L-shaped propagations can be realized. The property can be applied to the tunable surface mode waveguide. Compared with a traditional single function photonic crystal waveguide, our designed structure not only has a small size, but also is a tunable device.
Keywords:  photonic crystals      surface waves      photonic crystal waveguides      tunability  
Received:  18 November 2016      Revised:  20 January 2017      Accepted manuscript online: 
PACS:  42.70.Qs (Photonic bandgap materials)  
  42.82.Et (Waveguides, couplers, and arrays)  
  73.20.At (Surface states, band structure, electron density of states)  
  78.30.cb (Organic liquids)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 31401136) and the School Youth Fund of Henan University of Science and Technology, China (Grant No. 2014QN045).
Corresponding Authors:  Lan-Lan Zhang     E-mail:  zhanglan80515@163.com

Cite this article: 

Lan-Lan Zhang(张兰兰), Wei Liu(刘伟), Ping Li(李萍), Xi Yang(杨曦), Xu Cao(曹旭) Design of tunable surface mode waveguide based on photonic crystal composite structure using organic liquid 2017 Chin. Phys. B 26 064209

[1] Boscolo S and Midrio M 2002 Opt. Lett. 27 1001
[2] Mekis A, Chen J C, Kurland I, Fan S H, Villeneuve P R and Joannopoulos J D 1996 Phys. Rev. Lett. 77 3787
[3] Choi H G, Oh S S, Lee S G, Kim M W and Kim J E 2006 J. Appl. Phys. 100 123105
[4] Jiang B, Zhang Y J, Wang Y F and Zheng W H 2014 Opt. Commun. 310 114
[5] Lezec H J, Degiron A, Devaux E, Linke R A, Martin-Moreno L, Garcia-Vidal F J and Ebbesen T W 2002 Science 297 820
[6] Jiang L Y, Jia W, Li H P, Li X Y, Cong C X and Shen Z X 2009 J. Opt. Soc. Am. B 26 2157
[7] Moreno E, García-Vidal F J and Martín-Moreno L 2004 Phys. Rev. B 69 121402
[8] Jia W, Jiang L Y, Chen K and Li X Y 2010 Opt. Commun. 283 4078
[9] Wang Q, Zhang L L and Li Q 2010 Opt. Express 18 24245
[10] Rahachou I and Zozoulenko I V 2006 J. Opt. Soc. Am. B 23 1679
[11] Khoo E H, Cheng T H, Liu A Q, Li J and Pinjala D 2007 Appl. Phys. Lett. 91 171109
[12] Jiang B, Zhou W J, Chen W, Liu A J and Zheng W H 2011 J. Opt. Soc. Am. B 28 2038
[13] Jiang B, Zhang Y J, Wang Y F, Liu A J and Zheng W H 2012 Appl. Opt. 51 2361
[14] Gao Z, Gao F and Zhang B L 2016 Appl. Phys. Lett. 108 041105
[15] Hu J X and Fang Y T 2015 Int. J. Mod. Phys. B 29 1550159
[16] Erim M N, Erim N and Kurt H 2013 Photon. Nano. Fund. Appl. 11 123
[17] Hasek T, Kurt H, Citrin D S and Koch M 2006 Appl. Phys. Lett. 89 173508
[18] Kurt H and Citrin D S 2005 Appl. Phys. Lett. 87 041108
[19] Battula A and Chen S C 2007 Phys. Rev. B 76 193408
[20] Chen H B, Chen X S, Wang J and Lu W 2008 Physica B 403 4301
[21] Berenger J P 1994 J. Comput. Phys. 114 185
[22] Taflove and Hagness S C 2000 Computational Electrodynamics: The Finite-Difference Time-Domain Method (Boston: Artech House) pp. 80-84
[23] Assefa S, Petrich G S, Kolodziejski L A, Mondol and Smith H I 2004 J. Vac. Sci. Technol. B 22 3363
[24] Xu X S, Xiong Z G, Sun Z H, Du W, Lu L, Chen H D, Jin A Z, Zhang D Z 2006 Acta Phys. Sin. 55 12481 (in Chinese)
[25] Liu H, Yao J Q, Li E B 2006 Acta Phys. Sin. 55 2286 (in Chinese)
[1] Nonreciprocal wide-angle bidirectional absorber based on one-dimensional magnetized gyromagnetic photonic crystals
You-Ming Liu(刘又铭), Yuan-Kun Shi(史源坤), Ban-Fei Wan(万宝飞), Dan Zhang(张丹), and Hai-Feng Zhang(章海锋). Chin. Phys. B, 2023, 32(4): 044203.
[2] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[3] Generation of wideband tunable femtosecond laser based on nonlinear propagation of power-scaled mode-locked femtosecond laser pulses in photonic crystal fiber
Zhiguo Lv(吕志国) and Hao Teng(滕浩). Chin. Phys. B, 2021, 30(4): 044209.
[4] Effect of external electric field on crystalline structure anddielectric properties of Bi1.5MgNb1.5O7 thin films
Zhongzhe Liu(刘钟喆), Libin Gao(高莉彬), Kexin Liang(梁可欣), Zhen Fang(方针), Hongwei Chen(陈宏伟), and Jihua Zhang(张继华). Chin. Phys. B, 2021, 30(10): 107703.
[5] Quantization of electromagnetic modes and angular momentum on plasmonic nanowires
Guodong Zhu(朱国栋), Yangzhe Guo(郭杨喆), Bin Dong(董斌), Yurui Fang(方蔚瑞). Chin. Phys. B, 2020, 29(8): 087301.
[6] Tunability of Fano resonance in cylindrical core-shell nanorods
Ben-Li Wang(王本立). Chin. Phys. B, 2020, 29(4): 045202.
[7] Thermal tunable one-dimensional photonic crystals containing phase change material
Yuanlin Jia(贾渊琳), Peiwen Ren(任佩雯), and Chunzhen Fan(范春珍)†. Chin. Phys. B, 2020, 29(10): 104210.
[8] Dynamically tunable terahertz passband filter based on metamaterials integrated with a graphene middle layer
MaoSheng Yang(杨茂生), LanJu Liang(梁兰菊), DeQuan Wei(韦德泉), Zhang Zhang(张璋), Xin Yan(闫昕), Meng Wang(王猛), JianQuan Yao(姚建铨). Chin. Phys. B, 2018, 27(9): 098101.
[9] Resonant surface plasmons of a metal nanosphere treated as propagating surface plasmons
Yu-Rui Fang(方蔚瑞), Xiao-Rui Tian(田小锐). Chin. Phys. B, 2018, 27(6): 067302.
[10] Energy scaling and extended tunability of a ring cavity terahertz parametric oscillator based on KTiOPO4 crystal
Yuye Wang(王与烨), Yuchen Ren(任宇琛), Degang Xu(徐德刚), Longhuang Tang(唐隆煌), Yixin He(贺奕焮), Ci Song(宋词), Linyu Chen(陈霖宇), Changzhao Li(李长昭), Chao Yan(闫超), Jianquan Yao(姚建铨). Chin. Phys. B, 2018, 27(11): 114213.
[11] Comment on “Band gaps structure and semi-Dirac point of two-dimensional function photonic crystals” by Si-Qi Zhang et al.
Hai-Feng Zhang(章海锋). Chin. Phys. B, 2018, 27(1): 014205.
[12] Band gaps structure and semi-Dirac point of two-dimensional function photonic crystals
Si-Qi Zhang(张斯淇), Jing-Bin Lu(陆景彬), Yu Liang(梁禺), Ji Ma(马季), Hong Li(李宏), Xue Li(李雪), Xiao-Jing Liu(刘晓静), Xiang-Yao Wu(吴向尧), Xiang-Dong Meng(孟祥东). Chin. Phys. B, 2017, 26(2): 024208.
[13] Wavelength-tunable prism-coupled external cavity passively mode-locked quantum-dot laser
Wu Yan-Hua (吴艳华), Wu Jian (吴剑), Jin Peng (金鹏), Wang Fei-Fei (王飞飞), Hu Fa-Jie (胡发杰), Wei Heng (魏恒), Wang Zhan-Guo (王占国). Chin. Phys. B, 2015, 24(6): 068103.
[14] Giant enhancement of Kerr rotation in two-dimensional Bismuth iron garnet/Ag photonic crystals
Liang Hong (梁红), Liu Huan (刘欢), Zhang Qiang (张强), Fu Shu-Fang (付淑芳), Zhou Sheng (周胜), Wang Xuan-Zhang (王选章). Chin. Phys. B, 2015, 24(6): 067807.
[15] Tunable negative-index photonic crystals using colloidal magnetic fluids
Geng Tao (耿滔), Wang Xin (王新), Wang Yan (王岩), Dong Xiang-Mei (董祥美). Chin. Phys. B, 2015, 24(12): 124208.
No Suggested Reading articles found!