Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(6): 064301    DOI: 10.1088/1674-1056/26/6/064301
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Adaptive optimization on ultrasonic transmission tomography-based temperature image for biomedical treatment

Yun-Hao Zhu(朱昀浩)1, Jie Yuan(袁杰)1, Stephen Z Pinter2, Oliver D Kripfgans2, Qian Cheng(程茜)4, Xue-Ding Wang(王学鼎)4, Chao Tao(陶超)3, Xiao-Jun Liu(刘晓峻)3, Guan Xu(徐冠)2, Paul L Carson2
1 School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China;
2 Department of Radiology, University of Michigan, Ann Arbor, MI, USA;
3 School of Physics, Nanjing University, Nanjing 210093, China;
4 School of Physics, Tongji University, Shanghai 200092, China
Abstract  

Hyperthermia has proven to be beneficial to treating superficial malignancies, particularly chest wall recurrences of breast cancer. During hyperthermia, monitoring the time-temperature profiles in the target and surrounding areas is of great significance for the effect of therapy. An ultrasound-based temperature imaging method has advantages over other approaches. When the temperature around the tumor is calculated by using the propagation speed of ultrasound, there always exist overshoot artifacts along the boundary between different tissues. In this paper, we present a new method combined with empirical mode decomposition (EDM), similarity constraint, and continuity constraint to optimize the temperature images. Simulation and phantom experiment results compared with those from our previously proposed method prove that the EMD-based method can build a better temperature field image, which can adaptively yield better temperature images with less computation for assistant medical treatment control.

Keywords:  temperature imaging      empirical mode decomposition      ultrasound transmission tomography  
Received:  06 December 2016      Revised:  09 March 2017      Accepted manuscript online: 
PACS:  43.35.Wa (Biological effects of ultrasound, ultrasonic tomography)  
  43.80.Sh (Medical use of ultrasonics for tissue modification (permanent and temporary))  
  81.70.Cv (Nondestructive testing: ultrasonic testing, photoacoustic testing)  
Fund: 

Project supported by the DoD/BCRP Idea Award BC095397P1, the National Natural Science Foundation of China (Grant No. 61201425), and the Priority Academic Program Development of Jiangsu Higher Education Institutions, China.

Corresponding Authors:  Jie Yuan     E-mail:  yuanjie@nju.edu.cn

Cite this article: 

Yun-Hao Zhu(朱昀浩), Jie Yuan(袁杰), Stephen Z Pinter, Oliver D Kripfgans, Qian Cheng(程茜), Xue-Ding Wang(王学鼎), Chao Tao(陶超), Xiao-Jun Liu(刘晓峻), Guan Xu(徐冠), Paul L Carson Adaptive optimization on ultrasonic transmission tomography-based temperature image for biomedical treatment 2017 Chin. Phys. B 26 064301

[1] Falk M and Issels R 2001 Int. J. Hyperther 17 1
[2] Kumar C S and Mohammad F 2011 Adv. Drug. Del. Rev. 63 789
[3] Wust P, Hildebrandt B, Sreenivasa G, Rau B, Gellermann J, Riess H, Felix R and Schlag P M 2002 Lancet. Oncol. 3 487
[4] Hildebrandt B, Wust P, Ahlers O, Dieing A, Sreenivasa G, Kerner T, Felix R and Riess H 2002 Crit. Rev. OncolHematol 43 33
[5] Zagar T M, Oleson J R, Vujaskovic Z, Dewhirst M W, Craciunescu O I, Blackwell K L, Prosnitz L R and Jones E L 2010 Int. J. Hyperther. 26 612
[6] Huilgol N G, Gupta S and Sridhar C R 2010 J. Cancer Res. Ther. 6 492
[7] Cherukuri P, Glazer E S and Curley S A 2009 Adv. Drug. Del. Rev. 62 339
[8] Issels R D, Lindner L H, Verweij J, Wust P, Reichardt P, Schem B C, Abdelrahman S, Daugaard S, Salat C andWendtner C M 2010 Lancet. Oncol. 11 561
[9] Fessenden P, Lee E R and Samulski T V 1984 Cancer Res. 44 4799s
[10] Dickinson R J, Hall A S, Hind A J and Young I R 1986 J. Comput. Assisted Tomogr. 10 468
[11] Todd N, Vyas U, Bever J D, Payne A and Parker D L 2012 Magn. Reson. Med. 67 724
[12] Daniels M J, Varghese T, Madsen E L and Zagzebski J A 2007 Phys. Med. Biol. 52 4827
[13] Anand A, Savéry D and Hall C 2007 IEEE T. Ultrason. Ferr. 54 23
[14] Maruyma K, Mizushina S, Sugiura T and Leeuwen G M J V 2000 IEEE T. Microw. Theory 48 2141
[15] Le B D, Delannoy J and Levin R L 1989 Radiology 171 853
[16] Ishihara Y, Calderon A, Watanabe H, Okamoto K, Suzuki Y, Kuroda K and Suzuki Y 1995 Magn. Reson. Med. 34 814
[17] Diakite M, Odéen H, Todd N, Payne A and Parker D L 2014 Magn. Reson. Med. 72 178
[18] Leroy Y, Bocquet B and Mamouni A 1998 Physiol. Meas. 19 127
[19] Rahimian S and Tavakkoli J 2012 J. Acous. Soc. Am. 131 3211
[20] Bamber J C and Hill C R 1979 Ultrasound Med. Biol. 5 149
[21] Maass-Moreno R and Damianou C A 1996 J. Acous. Soc. Am. 100 2514
[22] Maass-Moreno R, Damianou C A and Sanghvi N T 1996 J. Acous. Soc. Am. 100 2522
[23] Arthur R M, Straube W L, Starman J D and Moros E G 2003 Med. Phys. 30 1021
[24] Liu D and Ebbini E S 2010 IEEE Trans. Biomed. Eng. 57 12
[25] Opieliński, Pruchnicki K J, Gudra P, Podgórski T, Kraśnicki P, Kurcz T, Sąsiadek J and Marek 2016 Arch. Acoust. 38 321
[26] Miller N R, Bamber J C and Meaney P M 2002 Ultrasound Med. Biol. 28 1319
[27] Shih T C, Yuan P, Lin W L and Kou H S 2007 Med. Eng. Phys. 29 946
[28] Yang D, Converse M C, Mahvi D M and Webster J G 2007 IEEE Trans. Biomed. Eng. 54 1382
[29] Krishnamoorthy R T S A R R M 2015 Adv. Nat. Appl. Sci. 9 29
[30] Perrone D, Aelterman J, Pižurica A, Jeurissen B, Philips W and Leemans A 2015 NeuroImage 120 441
[31] Chu Z Q, Yuan J, Pinter S Z, Kripfgans O D, Wang X D, Carson P L and Liu X J 2015 Chin. Phys. B 24 104303
[32] Huang A N E 2001 Int. Soc. Opt. Photon. 2001 71
[33] Huang N E, Shen Z, Long S R, Wu M C, Shih H H, Zheng Q, Yen N C, Chi C T and Liu H H 1998 P. Roy. Soc. A-Math. Phys. 454 903
[34] Wu Z and Huang N E 2004 P. Roy. Soc. A-Math. Phys. 460 1597
[35] Flandrin P, Rilling G and Goncalves P 2004 IEEE Signal Proc. Lett. 11 112
[36] Li C, Duric N, Littrup P and Huang L 2009 Ultrasound Med. Biol. 35 1615
[37] Duric N, Littrup P, Poulo L, Babkin A, Pevzner R, Holsapple E, Rama O and Glide C 2007 Med. Phys. 34 773
[38] Li C, Duric N and Huang L 2008 International Conference on Biomedical Engineering and Informatics 2 708
[39] Grosso V A D and Mader C W 1972 J. Acous. Soc. Am. 52 1442
[40] Parker N G and Povey M J W 2012 Food Hydrocolloid 26 99
[1] Denoising of chaotic signal using independent component analysis and empirical mode decomposition with circulate translating
Wen-Bo Wang(王文波), Xiao-Dong Zhang(张晓东), Yuchan Chang(常毓禅), Xiang-Li Wang(汪祥莉), Zhao Wang(王钊), Xi Chen(陈希), Lei Zheng(郑雷). Chin. Phys. B, 2016, 25(1): 010202.
[2] Temperature imaging with speed of ultrasonic transmission tomography for medical treatment control: A physical model-based method
Chu Zhe-Qi (储哲琦), Yuan Jie (袁杰), Stephen Z. Pinter, Oliver D. Kripfgans, Wang Xue-Ding (王学鼎), Paul L. Carson, Liu Xiao-Jun (刘晓峻). Chin. Phys. B, 2015, 24(10): 104303.
[3] A method for extracting human gait series from accelerometer signals based on the ensemble empirical mode decomposition
Fu Mao-Jing(符懋敬), Zhuang Jian-Jun(庄建军), Hou Feng-Zhen(侯凤贞), Zhan Qing-Bo(展庆波),Shao Yi(邵毅), and Ning Xin-Bao(宁新宝). Chin. Phys. B, 2010, 19(5): 058701.
[4] Sensitivity of intrinsic mode functions of Lorenz system to initial values based on EMD method
Zou Ming-Wei (邹明玮), Feng Guo-lin (封国林), Gao Xin-Quan (高新全). Chin. Phys. B, 2006, 15(6): 1384-1390.
[5] On the climate prediction of nonlinear and non-stationary time series with the EMD method
Wan Shi-Quan (万仕全), Feng Guo-Lin (封国林), Dong Wen-Jie (董文杰), Li Jian-Ping (李建平), Gao Xin-Quan (高新全), He Wen-Ping (何文平). Chin. Phys. B, 2005, 14(3): 628-633.
No Suggested Reading articles found!