|
|
Generating EPR-entangled mechanical state via feeding finite-bandwidth squeezed light |
Cheng-qian Yi(伊程前), Zhen Yi(伊珍), Wen-ju Gu(谷文举) |
Institute of Quantum Optics and Information Photonics, School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, China |
|
|
Abstract Einstein-Podolski-Rosen (EPR) entanglement state is achievable by combining two single-mode position and momentum squeezed states at a 50:50 beam-splitter (BS). We investigate the generation of the EPR entangled state of two vibrating membranes in a ring resonator, where clockwise (CW) and counter-clockwise (CCW) travelling-wave modes are driven by lasers and finite-bandwidth squeezed lights. Since the optomechanical coupling depends on the location of the membranes, CW and CCW can couple to the symmetric and antisymmetric combination of mechanical modes for a suitable arrangement, which corresponds to a 50:50 BS mixing. Moreover, by employing the red-detuned driving laser and tuning the central frequency of squeezing field blue detuned from the driving laser with a mechanical frequency, the squeezing property of squeezed light can be perfectly transferred to the mechanical motion in the weak coupling regime. Thus, the BS mixing modes can be position and momentum squeezed by feeding the appropriate squeezed lights respectively, and the EPR entangled mechanical state is obtained. Moreover, cavity-induced mechanical cooling can further suppress the influence of thermal noise on the entangled state.
|
Received: 19 December 2016
Revised: 20 March 2017
Accepted manuscript online:
|
PACS:
|
03.65.Ud
|
(Entanglement and quantum nonlocality)
|
|
42.50.Pq
|
(Cavity quantum electrodynamics; micromasers)
|
|
42.50.Wk
|
(Mechanical effects of light on material media, microstructures and particles)
|
|
Fund: Projects supported by the National Natural Science Foundation of China (Grant Nos. 61505014 and 11504031), the Yangtze Youth Talents Fund, and the Yangtze Funds for Youth Teams of Science and Technology Innovation (Grant No. 2015cqt03). |
Corresponding Authors:
Zhen Yi
E-mail: yizhen@yangtzeu.edu.cn
|
Cite this article:
Cheng-qian Yi(伊程前), Zhen Yi(伊珍), Wen-ju Gu(谷文举) Generating EPR-entangled mechanical state via feeding finite-bandwidth squeezed light 2017 Chin. Phys. B 26 060303
|
[1] |
Teufel J D, Donner T, Li D, Harlow J W, Allman M S, Cicak K, Sirois A J, Whittaker J D, Lehnert K W and Simmonds R W 2011 Nature 475 359
|
[2] |
Chan J, Alegre T P M, Safavi-Naeini A H, Hill J T, Krause A, Grölacher S, Aspelmeyer M and Painter O 2011 Nature 478 89
|
[3] |
Verhagen E, Deléglise S, Weis S, Schliesser A and Kippenberg T J 2012 Nature 482 63
|
[4] |
Gröblacher S, Hammerer K, Vanner M and Aspelmeyer M 2009 Nature 460 724
|
[5] |
Safavi-Naeini A H, Alegre T P M, Chan J, Eichenfield M, Winger M, Lin Q, Hill J T, Chang D E and Painter O 2011 Nature 472 69
|
[6] |
Weis S, Riviére R, Deléglise S, Gavartin E, Arcizet O, Schliesser A and Kippenberg T J 2010 Science 330 1520
|
[7] |
Yan X B, Gu K H, Fu C B, Cui C L and Wu J H 2014 Chin. Phys. B 23 114201
|
[8] |
Cohen J D, Meenehan S M, MacCabe G S, Gröblacher S, Safavi-Naeini A H, Marsili F, Shaw M D and Painter O 2015 Nature 520 522
|
[9] |
Hu Y W, Xiao Y F, Liu Y C and Gong Q 2013 Front. Phys. 8 475
|
[10] |
Liu Y C, Hu Y W, Wong C W and Xiao Y F 2013 Chin. Phys. B 22 114213
|
[11] |
Hill J T, Safavi-Naeini A H, Chan J and Painter O 2012 Nat. Commun. 3 1196
|
[12] |
Liu Y, Davanço M, Aksyuk V and Srinivasan K 2013 Phys. Rev. Lett. 110 223603
|
[13] |
Dong C, Fiore V, Kuzyk M C and Wang H 2012 Science 338 1609
|
[14] |
Tian L 2012 Phys. Rev. Lett. 108 153604
|
[15] |
Wang Y D and Clerk A A 2012 Phys. Rev. Lett. 108 153603
|
[16] |
Ardnt M and Hornberger K 2014 Nat. Phys. 10 271
|
[17] |
Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press) p. 59
|
[18] |
Mancini S, Giovannetti V, Vitali D and Tombesi P 2002 Phys. Rev. Lett. 88 120401
|
[19] |
Feng X M, Xiao Y, Yu Y F and Zhang Z M 2015 Chin. Phys. B 24 050301
|
[20] |
Zhang J, Peng K and Braunstein S L 2003 Phys. Rev. A 68 013808
|
[21] |
Yan Y, Gu W J and Li G X 2015 Sci. China-Phys. Mech. Astron. 58 050306
|
[22] |
Wang M, Lü X Y, Wang Y D, You J Q and Wu Y 2016 Phys. Rev. A 94 053807
|
[23] |
Vacanti G, Paternostro M, Palma G M and Vedral V 2008 New J. Phys. 10 095014
|
[24] |
Reid M D, Drummond P D, Bowen W P, Cavalcanti E G, Lam P K, Bachor H A, Andersen U L and Leuchs G 2009 Rev. Mod. Phys. 81 1727
|
[25] |
Ou Z Y, Pereira S F, Kimble H J and Peng K C 1992 Phys. Rev. Lett. 68 3663
|
[26] |
Loock P and Braunstein S L 2000 Phys. Rev. Lett. 84 3482
|
[27] |
Tan H, Li G and Meystre P 2013 Phys. Rev. A 87 033829
|
[28] |
Agarwal G S and Huang S 2016 Phys. Rev. A 93 043844
|
[29] |
Qu Q 2016 Chin. Phys. B 25 010304
|
[30] |
Asjad M, Zippilli S and Vitali D 2016 Phys. Rev. A 93 062307
|
[31] |
Ge W and Bhattacharya M 2016 New J. Phys. 18 103002
|
[32] |
Yan Y, Zhu J P, Zhao S M and Li G X 2015 Ann. Phys. 527 169
|
[33] |
Yan Y, Li G X and Wu Q L 2015 Opt. Express 23 021306
|
[34] |
Clark J B, Lecocq F, Simmonds R W, Aumentado J and Teufel J D 2016 Nat. Phys. 12 683
|
[35] |
Biancofiore C, Karuza M, Galassi M, Natali R, Tombesi P, Giuseppe G D and Vitali D 2011 Phys. Rev. A 84 033814
|
[36] |
Heinrich G, Ludwig M, Wu H, Hammerer K and Marquardt F 2011 C. R. Phys. 12 837
|
[37] |
Hammerer K, Wallquist M, Genes C, Ludwig M, Marquardt F, Treutlein P, Zoller P, Ye J and Kimble H J 2009 Phys. Rev. Lett. 103 063005
|
[38] |
Bhattacharya M and Meystre P 2008 Phys. Rev. A 78 041801(R)
|
[39] |
Gardiner C W and Zoller P 2000 Quantum noise (Berlin: Springer-Verlag) pp. 328-330
|
[40] |
Jähne K, Genes C, Hammerer K, Wallquist M, Polzik E S and Zoller P 2009 Phys. Rev. A 79 063819
|
[41] |
Wilson-Rae I, Nooshi N, Zwerger W and Kippenberg T J 2007 Phys. Rev. Lett. 99 093901
|
[42] |
Marquardt F, Chen J P, Clerk A A and Girvin S M 2007 Phys. Rev. Lett. 99 093902
|
[43] |
Huang S and Agarwal G S 2009 New J. Phys. 11 103044
|
[44] |
Duan L M, Giedke G, Cirac J I and Zoller P 2000 Phys. Rev. Lett. 84 2722
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|