Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(6): 060303    DOI: 10.1088/1674-1056/26/6/060303
GENERAL Prev   Next  

Generating EPR-entangled mechanical state via feeding finite-bandwidth squeezed light

Cheng-qian Yi(伊程前), Zhen Yi(伊珍), Wen-ju Gu(谷文举)
Institute of Quantum Optics and Information Photonics, School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, China
Abstract  Einstein-Podolski-Rosen (EPR) entanglement state is achievable by combining two single-mode position and momentum squeezed states at a 50:50 beam-splitter (BS). We investigate the generation of the EPR entangled state of two vibrating membranes in a ring resonator, where clockwise (CW) and counter-clockwise (CCW) travelling-wave modes are driven by lasers and finite-bandwidth squeezed lights. Since the optomechanical coupling depends on the location of the membranes, CW and CCW can couple to the symmetric and antisymmetric combination of mechanical modes for a suitable arrangement, which corresponds to a 50:50 BS mixing. Moreover, by employing the red-detuned driving laser and tuning the central frequency of squeezing field blue detuned from the driving laser with a mechanical frequency, the squeezing property of squeezed light can be perfectly transferred to the mechanical motion in the weak coupling regime. Thus, the BS mixing modes can be position and momentum squeezed by feeding the appropriate squeezed lights respectively, and the EPR entangled mechanical state is obtained. Moreover, cavity-induced mechanical cooling can further suppress the influence of thermal noise on the entangled state.
Keywords:  EPR-entangled mechanical state      finite-bandwith squeezed light      squeezing transfer  
Received:  19 December 2016      Revised:  20 March 2017      Accepted manuscript online: 
PACS:  03.65.Ud (Entanglement and quantum nonlocality)  
  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
  42.50.Wk (Mechanical effects of light on material media, microstructures and particles)  
Fund: Projects supported by the National Natural Science Foundation of China (Grant Nos. 61505014 and 11504031), the Yangtze Youth Talents Fund, and the Yangtze Funds for Youth Teams of Science and Technology Innovation (Grant No. 2015cqt03).
Corresponding Authors:  Zhen Yi     E-mail:

Cite this article: 

Cheng-qian Yi(伊程前), Zhen Yi(伊珍), Wen-ju Gu(谷文举) Generating EPR-entangled mechanical state via feeding finite-bandwidth squeezed light 2017 Chin. Phys. B 26 060303

[1] Teufel J D, Donner T, Li D, Harlow J W, Allman M S, Cicak K, Sirois A J, Whittaker J D, Lehnert K W and Simmonds R W 2011 Nature 475 359
[2] Chan J, Alegre T P M, Safavi-Naeini A H, Hill J T, Krause A, Grölacher S, Aspelmeyer M and Painter O 2011 Nature 478 89
[3] Verhagen E, Deléglise S, Weis S, Schliesser A and Kippenberg T J 2012 Nature 482 63
[4] Gröblacher S, Hammerer K, Vanner M and Aspelmeyer M 2009 Nature 460 724
[5] Safavi-Naeini A H, Alegre T P M, Chan J, Eichenfield M, Winger M, Lin Q, Hill J T, Chang D E and Painter O 2011 Nature 472 69
[6] Weis S, Riviére R, Deléglise S, Gavartin E, Arcizet O, Schliesser A and Kippenberg T J 2010 Science 330 1520
[7] Yan X B, Gu K H, Fu C B, Cui C L and Wu J H 2014 Chin. Phys. B 23 114201
[8] Cohen J D, Meenehan S M, MacCabe G S, Gröblacher S, Safavi-Naeini A H, Marsili F, Shaw M D and Painter O 2015 Nature 520 522
[9] Hu Y W, Xiao Y F, Liu Y C and Gong Q 2013 Front. Phys. 8 475
[10] Liu Y C, Hu Y W, Wong C W and Xiao Y F 2013 Chin. Phys. B 22 114213
[11] Hill J T, Safavi-Naeini A H, Chan J and Painter O 2012 Nat. Commun. 3 1196
[12] Liu Y, Davanço M, Aksyuk V and Srinivasan K 2013 Phys. Rev. Lett. 110 223603
[13] Dong C, Fiore V, Kuzyk M C and Wang H 2012 Science 338 1609
[14] Tian L 2012 Phys. Rev. Lett. 108 153604
[15] Wang Y D and Clerk A A 2012 Phys. Rev. Lett. 108 153603
[16] Ardnt M and Hornberger K 2014 Nat. Phys. 10 271
[17] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press) p. 59
[18] Mancini S, Giovannetti V, Vitali D and Tombesi P 2002 Phys. Rev. Lett. 88 120401
[19] Feng X M, Xiao Y, Yu Y F and Zhang Z M 2015 Chin. Phys. B 24 050301
[20] Zhang J, Peng K and Braunstein S L 2003 Phys. Rev. A 68 013808
[21] Yan Y, Gu W J and Li G X 2015 Sci. China-Phys. Mech. Astron. 58 050306
[22] Wang M, Lü X Y, Wang Y D, You J Q and Wu Y 2016 Phys. Rev. A 94 053807
[23] Vacanti G, Paternostro M, Palma G M and Vedral V 2008 New J. Phys. 10 095014
[24] Reid M D, Drummond P D, Bowen W P, Cavalcanti E G, Lam P K, Bachor H A, Andersen U L and Leuchs G 2009 Rev. Mod. Phys. 81 1727
[25] Ou Z Y, Pereira S F, Kimble H J and Peng K C 1992 Phys. Rev. Lett. 68 3663
[26] Loock P and Braunstein S L 2000 Phys. Rev. Lett. 84 3482
[27] Tan H, Li G and Meystre P 2013 Phys. Rev. A 87 033829
[28] Agarwal G S and Huang S 2016 Phys. Rev. A 93 043844
[29] Qu Q 2016 Chin. Phys. B 25 010304
[30] Asjad M, Zippilli S and Vitali D 2016 Phys. Rev. A 93 062307
[31] Ge W and Bhattacharya M 2016 New J. Phys. 18 103002
[32] Yan Y, Zhu J P, Zhao S M and Li G X 2015 Ann. Phys. 527 169
[33] Yan Y, Li G X and Wu Q L 2015 Opt. Express 23 021306
[34] Clark J B, Lecocq F, Simmonds R W, Aumentado J and Teufel J D 2016 Nat. Phys. 12 683
[35] Biancofiore C, Karuza M, Galassi M, Natali R, Tombesi P, Giuseppe G D and Vitali D 2011 Phys. Rev. A 84 033814
[36] Heinrich G, Ludwig M, Wu H, Hammerer K and Marquardt F 2011 C. R. Phys. 12 837
[37] Hammerer K, Wallquist M, Genes C, Ludwig M, Marquardt F, Treutlein P, Zoller P, Ye J and Kimble H J 2009 Phys. Rev. Lett. 103 063005
[38] Bhattacharya M and Meystre P 2008 Phys. Rev. A 78 041801(R)
[39] Gardiner C W and Zoller P 2000 Quantum noise (Berlin: Springer-Verlag) pp. 328-330
[40] Jähne K, Genes C, Hammerer K, Wallquist M, Polzik E S and Zoller P 2009 Phys. Rev. A 79 063819
[41] Wilson-Rae I, Nooshi N, Zwerger W and Kippenberg T J 2007 Phys. Rev. Lett. 99 093901
[42] Marquardt F, Chen J P, Clerk A A and Girvin S M 2007 Phys. Rev. Lett. 99 093902
[43] Huang S and Agarwal G S 2009 New J. Phys. 11 103044
[44] Duan L M, Giedke G, Cirac J I and Zoller P 2000 Phys. Rev. Lett. 84 2722
[1] Unified entropy entanglement with tighter constraints on multipartite systems
Qi Sun(孙琪), Tao Li(李陶), Zhi-Xiang Jin(靳志祥), and Deng-Feng Liang(梁登峰). Chin. Phys. B, 2023, 32(3): 030304.
[2] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[3] Transformation relation between coherence and entanglement for two-qubit states
Qing-Yun Zhou(周晴云), Xiao-Gang Fan(范小刚), Fa Zhao(赵发), Dong Wang(王栋), and Liu Ye(叶柳). Chin. Phys. B, 2023, 32(1): 010304.
[4] Measurement-device-independent one-step quantum secure direct communication
Jia-Wei Ying(应佳伟), Lan Zhou(周澜), Wei Zhong(钟伟), and Yu-Bo Sheng(盛宇波). Chin. Phys. B, 2022, 31(12): 120303.
[5] Quantum steerability of two qubits mediated by one-dimensional plasmonic waveguides
Ye-Qi Zhang(张业奇), Xiao-Ting Ding(丁潇婷), Jiao Sun(孙娇), and Tian-Hu Wang(王天虎). Chin. Phys. B, 2022, 31(12): 120305.
[6] Quantum correlation and entropic uncertainty in a quantum-dot system
Ying-Yue Yang(杨颖玥), Li-Juan Li(李丽娟), Liu Ye(叶柳), and Dong Wang(王栋). Chin. Phys. B, 2022, 31(10): 100303.
[7] Measurement-device-independent quantum secret sharing with hyper-encoding
Xing-Xing Ju(居星星), Wei Zhong(钟伟), Yu-Bo Sheng(盛宇波), and Lan Zhou(周澜). Chin. Phys. B, 2022, 31(10): 100302.
[8] Steering quantum nonlocalities of quantum dot system suffering from decoherence
Huan Yang(杨欢), Ling-Ling Xing(邢玲玲), Zhi-Yong Ding(丁智勇), Gang Zhang(张刚), and Liu Ye(叶柳). Chin. Phys. B, 2022, 31(9): 090302.
[9] Probabilistic quantum teleportation of shared quantum secret
Hengji Li(李恒吉), Jian Li(李剑), and Xiubo Chen(陈秀波). Chin. Phys. B, 2022, 31(9): 090303.
[10] Robustness of two-qubit and three-qubit states in correlated quantum channels
Zhan-Yun Wang(王展云), Feng-Lin Wu(吴风霖), Zhen-Yu Peng(彭振宇), and Si-Yuan Liu(刘思远). Chin. Phys. B, 2022, 31(7): 070302.
[11] Local sum uncertainty relations for angular momentum operators of bipartite permutation symmetric systems
I Reena, H S Karthik, J Prabhu Tej, Sudha, A R Usha Devi, and A K Rajagopal. Chin. Phys. B, 2022, 31(6): 060301.
[12] Constructing the three-qudit unextendible product bases with strong nonlocality
Bichen Che(车碧琛), Zhao Dou(窦钊), Xiubo Chen(陈秀波), Yu Yang(杨榆), Jian Li(李剑), and Yixian Yang(杨义先). Chin. Phys. B, 2022, 31(6): 060302.
[13] Experimental realization of quantum controlled teleportation of arbitrary two-qubit state via a five-qubit entangled state
Xiao-Fang Liu(刘晓芳), Dong-Fen Li(李冬芬), Yun-Dan Zheng(郑云丹), Xiao-Long Yang(杨小龙), Jie Zhou(周杰), Yu-Qiao Tan(谭玉乔), and Ming-Zhe Liu(刘明哲). Chin. Phys. B, 2022, 31(5): 050301.
[14] Self-error-rejecting multipartite entanglement purification for electron systems assisted by quantum-dot spins in optical microcavities
Yong-Ting Liu(刘永婷), Yi-Ming Wu(吴一鸣), and Fang-Fang Du(杜芳芳). Chin. Phys. B, 2022, 31(5): 050303.
[15] Protecting geometric quantum discord via partially collapsing measurements of two qubits in multiple bosonic reservoirs
Xue-Yun Bai(白雪云) and Su-Ying Zhang(张素英). Chin. Phys. B, 2022, 31(4): 040308.
No Suggested Reading articles found!