Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(4): 047701    DOI: 10.1088/1674-1056/26/4/047701
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Study on the dielectric properties of Mg-doped NaBiTi6O14 ceramics

Yong Chen(陈勇)1, Simin Xue(薛思敏)1, Qian Luo(骆迁)1, Huyin Su(苏虎音)1, Qi Chen(陈琪)1, Zhen Huang(黄镇)1, Linfang Xu(徐玲芳)1, Wanqiang Cao(曹万强)1,2, Zhaoxiang Huang(黄兆祥)3
1 School of Physics and Electronic Science, Key Laboratory of Ferro & Piezoelectric Materials and Devices of Hubei Province, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei University, Wuhan 430062, China;
2 School of Materials Science and Engineering, Hubei University, Wuhan 430062, China;
3 Department of Information Science and Technology, WenHua College, Wuhan 430074, China
Abstract  With the interest in using lead-free materials to replace lead-containing materials increasing, the use of Na0.5Bi0.5TiO3 (NBT) has come into our sight. We studied the composition of NBT and found that NaBiTi6O14 ceramics can be compositionally tuned by Mg-doping on the Ti-site to optimize the dielectric properties. In this study, Mg-doped NaBiTi6O14 (NaBi(Ti0.98Mg0.02)6O14-δ) ceramics were prepared by a conventional mixed oxide route at different sintering temperatures, and their dielectric properties have been studied at a wide temperature range. X-ray diffraction (XRD) patterns of the NBT-based ceramics indicate that all samples have a pure phase without any secondary impurity phase. The experimental data show that after Mg-doping, the relative permittivity and dielectric loss become lower at 1040, 1060, and 1080℃ except 1020℃ and at different frequencies from 10 kHz, 100 kHz to 1 MHz. Take 1060℃ for example, when the sintering temperature is 1060℃ at 1 MHz, the minimum relative permittivity of NaBiTi6O14 is 32.9 and the minimum dielectric loss is 0.01417, the relative permittivity of NaBi(Ti0.98Mg0.02)6O14-δ under the same condition is 25.8 and the dielectric loss is 0.000104. We explored the mechanism of Mg-doping and surprisingly found that the dielectric property of NaBi(Ti0.98Mg0.02)6O14-δ becomes better owing to Mg-doping. Thus, NaBi(Ti0.98Mg0.02)6O14-δ can be used in microwave ceramics and applied to new energy materials.
Keywords:  NaBiTi6O14      permittivity      loss (tanδ)      dielectric ceramics  
Received:  18 October 2016      Revised:  20 January 2017      Accepted manuscript online: 
PACS:  77.22.-d (Dielectric properties of solids and liquids)  
  77.84.-s (Dielectric, piezoelectric, ferroelectric, and antiferroelectric materials)  
Fund: Project supported by the Fund from the Hubei Provincial Department of Education, China (Grant No. D20161006).
Corresponding Authors:  Wanqiang Cao, Zhaoxiang Huang     E-mail:  caowanq@163.com;huangzhaox@163.com

Cite this article: 

Yong Chen(陈勇), Simin Xue(薛思敏), Qian Luo(骆迁), Huyin Su(苏虎音), Qi Chen(陈琪), Zhen Huang(黄镇), Linfang Xu(徐玲芳), Wanqiang Cao(曹万强), Zhaoxiang Huang(黄兆祥) Study on the dielectric properties of Mg-doped NaBiTi6O14 ceramics 2017 Chin. Phys. B 26 047701

[1] Cao W Q, Liu P Z, Chen Y, et al. 2016 Acta Phys. Sin. 65 137701 (in Chinese)
[2] Chen Y, Gong S, Zhang B, et al. 2013 Microelectron. Eng. 103 106
[3] Huang H H, Chen Y, Li Z, et al. 2015 J. Wuhan University of Tech. -Mater. Sci. Edn. 30 674
[4] Cao W Q and Shang X Z 2015 Ferroelectr. Lett. 42 132
[5] Chen Y, Zhang S, Li Z, et al. 2016 J. Wuhan University of Tech. -Mater. Sci. Ed. 31 87
[6] Chen Y, Gong S P, Fu Q Y, et al. 2010 Chin. Phys. B 19 117301
[7] Hansen P, Hennings D and Schreinemacher H 1998 J. Am. Ceram. Soc. 81 1369
[8] Kishi H, Kohzu N, Iguchi Y, Sugino J and Kato M 2001 J. Eur. Ceram. Soc. 21 1643
[9] Nam S P, Lee S G, Bae S G and Lee Y H 2007 J. Electrical Eng. Technol. 2 98
[10] Zang J, Li M, Sinclair D C, J Wook and R Jürgen 2014 J. Am. Ceram. Soc. 97 1523
[11] Li M, Pietrowski M J, De Souza R A, Zhang H, Reaney I M, Cook S N, Kilner J A and Sinclair D C 2014 Nat. Mater. 13 31
[12] Huang X, Gao C, Wei M, Z Chen and Y Cui 2011 Rare Met. 30 72
[13] Guo Y, Xiao P, Luo L, et al. 2014 J. Mater. Sci.: Mater. Electron. 25 3753
[14] Zang J, Li M, D.C. Sinclair, W. Jo and J. Rödel 2014 J. Am. Ceram. Soc. 97 1523
[15] Li M, Feteira A, Mirsaneh M, Lee S, Lanagan M T, Randall C A and Sinclair D C 2010 J. Am. Ceram. Soc. 93 4087
[16] Li Z F, Chan W, Li Y X, Kwok K W and Choy S H 2010 J. Alloys Compd. 41 70
[17] Feng C, Yang C H, Geng F J, Lv P P and Yao Q 2015 J. Eur. Ceram. Soc. 36
[18] Lei W, Yan Y Y, Wang X H, Lu W, Yang Z B and Lu W Z 2015 Ceram. Int. 41 521
[19] Li M, Feteira A, Mirsaneh M, Lee S, Lanagan M T, Randall C A and Sinclair D C 2010 J. Am. Ceram. Soc. 93 4087
[20] Chen Y, Bian M Y, Zhang C C, Chen Q, Luo Q, Huang Z, Cao W Q, Pan R K and Qi Y J 2017 Sci. China Ser. E 47 32 (in Chinese)
[1] Microstructural, magnetic and dielectric performance of rare earth ion (Sm3+)-doped MgCd ferrites
Dandan Wen(文丹丹), Xia Chen(陈霞), Dasen Luo(骆大森), Yi Lu(卢毅),Yixin Chen(陈一鑫), Renpu Li(黎人溥), and Wei Cui(崔巍). Chin. Phys. B, 2022, 31(7): 078503.
[2] Modeling of high permittivity insulator structure with interface charge by charge compensation
Zhi-Gang Wang(汪志刚), Yun-Feng Gong(龚云峰), and Zhuang Liu(刘壮). Chin. Phys. B, 2022, 31(2): 028501.
[3] Comprehensive studies on dielectric properties of p-methoxy benzylidene p-decyl aniline with function of temperature and frequency in planar geometry: A potential nematic liquid crystal for display devices
Pankaj Kumar Tripathi, Kunwar Vikram, Mithlesh Tiwari, and Ajay Shriram. Chin. Phys. B, 2021, 30(6): 064208.
[4] A novel high breakdown voltage and high switching speed GaN HEMT with p-GaN gate and hybrid AlGaN buffer layer for power electronics applications
Yong Liu(刘勇), Qi Yu(于奇), and Jiang-Feng Du(杜江锋). Chin. Phys. B, 2020, 29(12): 127701.
[5] Microfluidic temperature sensor based on temperature-dependent dielectric property of liquid
Qi Liu(刘琦), Yu-Feng Yu(俞钰峰), Wen-Sheng Zhao(赵文生), Hui Li(李慧). Chin. Phys. B, 2020, 29(1): 010701.
[6] The c-axis complex permittivity and electrical impedance in BaFe2As2:Experimental examination on transformation validity
Yongqiang Li(李永强), Xinzhe Du(杜新哲), Dongliang Gong(龚冬良), Qirui Yang(杨綦睿), Wenliang Zhang(张汶良), Tao Xie(谢涛), Bo Feng(冯波), Kai Chen(陈恺), Huiqian Luo(罗会仟), Junming Liu(刘俊明), Jinsong Zhu(朱劲松). Chin. Phys. B, 2019, 28(5): 057702.
[7] Improved dielectric and electro-optical parameters of nematic liquid crystal doped with magnetic nanoparticles
Geeta Yadav, Govind Pathak, Kaushlendra Agrahari, Mahendra Kumar, Mohd Sajid Khan, V S Chandel, Rajiv Manohar. Chin. Phys. B, 2019, 28(3): 034209.
[8] Lattice dynamics properties of chalcopyrite ZnSnP2: Density-functional calculations by using a linear response theory
You Yu(虞游), Yu-Jing Dong(董玉静), Yan-Hong Shen(沈艳红), Guo-Dong Zhao(赵国栋), Xiao-Lin Zheng(郑小林), Jia-Nan Sheng(盛佳南). Chin. Phys. B, 2017, 26(4): 046302.
[9] Field-induced phase transitions in chiral smectic liquid crystals studied by the constant current method
H Dhaouadi, R Zgueb, O Riahi, F Trabelsi, T Othman. Chin. Phys. B, 2016, 25(5): 057704.
[10] Theoretical calculation and experiment of microwave electromagnetic property of Ni(C) nanocapsules
Dan-Feng Zhang(张丹枫), Zhi-Feng Hao(郝志峰), Bi Zeng(曾碧), Yan-Nan Qian(钱艳楠), Ying-Xin Huang(黄颖欣), Zhen-Da Yang(杨振大). Chin. Phys. B, 2016, 25(4): 040201.
[11] Preparation and characterization of Sr0.5Ba0.5Nb2O6 glass-ceramic on piezoelectric properties
Shan Jiang(姜珊), Xuan-Ming Wang(王炫明), Jia-Yu Li(李佳宇),Yong Zhang(张勇), Tao Zheng(郑涛), Jing-Wen Lv(吕景文). Chin. Phys. B, 2016, 25(3): 037701.
[12] Novel attributes and design considerations of effective oxide thickness in nano DG MOSFETs
Morteza Charmi. Chin. Phys. B, 2015, 24(4): 047302.
[13] The determination of the relative permittivity of periodic stratified media based on the iterative time-reversal method
Zhang Zhi-Min (章志敏), Wang Bing-Zhong (王秉中), Liang Mu-Sheng (梁木生), Ji Qing (纪晴), Song Gang-Bing (宋钢兵). Chin. Phys. B, 2014, 23(4): 048403.
[14] Different influences of Schottky metal on the strain and relative permittivity of barrier layer between AlN/GaN and AlGaN/GaN heterostructure Schottky diodes
Lü Yuan-Jie (吕元杰), Feng Zhi-Hong (冯志红), Gu Guo-Dong (顾国栋), Dun Shao-Bo (敦少博), Yin Jia-Yun (尹甲运), Wang Yuan-Gang (王元刚), Xu Peng (徐鹏), Han Ting-Ting (韩婷婷), Song Xu-Bo (宋旭波), Cai Shu-Jun (蔡树军), Luan Chong-Biao (栾崇彪), Lin Zhao-Jun (林兆军). Chin. Phys. B, 2014, 23(2): 027102.
[15] Ultra-low specific on-resistance vertical double-diffused metal-oxide semiconductor with a high-k dielectric-filled extended trench
Wang Pei (王沛), Luo Xiao-Rong (罗小蓉), Jiang Yong-Heng (蒋永恒), Wang Qi (王琦), Zhou Kun (周坤), Wu Li-Juan (吴丽娟), Wang Xiao-Wei (王骁玮), Cai Jin-Yong (蔡金勇), Luo Yin-Chun (罗尹春), Fan Ye (范叶), Hu Xia-Rong (胡夏融), Fan Yuan-Hang (范远航), Wei Jie (魏杰), Zhang Bo (张波). Chin. Phys. B, 2013, 22(2): 027305.
No Suggested Reading articles found!