CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Intrinsic luminescence centers in γ- and θ-alumina nanoparticles |
Abdolvahab Amirsalari1, Saber Farjami Shayesteh1, Reza Taheri Ghahrizjani2 |
1 Nanostructures Labratory, Department of Physics, University of Guilan, Rasht, Iran; 2 Department of Physics, Optics and Laser Group, Shahreza Branch, Islamic Azad University, Isfahan, Iran |
|
|
Abstract In this study, we investigate the photoluminescence (PL) properties of γ and θ-alumina nanoparticles synthesized by the chemical wet method followed by annealing. The obtained experimental results indicate the presence of some favorable near ultraviolet (NUV)-orange luminescent centers for usage in various luminescence applications, such as oxygen vacancies (F, F2+, F22+, and F2 centers), OH related defects, cation interstitial centers, and some new luminescence bands attributed to trapped-hole centers or donor-acceptor centers. The energy states of each defect are discussed in detail. The defects mentioned could alter the electronic structure by producing some energy states in the band gap that result in the optical absorption in the middle ultraviolet (MUV) region. Spectra show that photoionazation of F and F2 centers plays a crucial role in providing either free electrons for the conduction band, or the photoconversions of aggregated oxygen vacancies into each other, or mobile electrons for electrons-holes recombination process by the Shockley-Read-Hall (SRH) mechanism.
|
Received: 25 June 2016
Revised: 15 November 2016
Accepted manuscript online:
|
PACS:
|
61.46.Hk
|
(Nanocrystals)
|
|
78.55.Hx
|
(Other solid inorganic materials)
|
|
78.67.Bf
|
(Nanocrystals, nanoparticles, and nanoclusters)
|
|
81.07.Bc
|
(Nanocrystalline materials)
|
|
Corresponding Authors:
Saber Farjami Shayesteh, Reza Taheri Ghahrizjani
E-mail: saber@guilan.ac.ir;Taheri.reza@iaush.ac.ir
|
Cite this article:
Abdolvahab Amirsalari, Saber Farjami Shayesteh, Reza Taheri Ghahrizjani Intrinsic luminescence centers in γ- and θ-alumina nanoparticles 2017 Chin. Phys. B 26 036101
|
[1] |
Heimann R B 2010 Classic and Advanced Ceramics: from Fundamentals to Applications John Wiley & Sons
|
[2] |
Costina I and Franchy R 2001 Appl. Phys. Lett. 78 4139
|
[3] |
Ealet B, Elyakhloufi M, Gillet E and Ricci M 1994 Thin Solid Films 250 92
|
[4] |
Carrasco J, Gomes J R and Illas F 2004 Phys. Rev. B 69 064116
|
[5] |
Aliabad H R 2015 Chin. Phys. B 24 097102
|
[6] |
Guo Q L 2001 Chin. Phys. B 1080
|
[7] |
Ya-Bin W, Gang Z, Ming-Jie L, Xiang-Long C and Jun C 2009 Chin. Phys. B 181181
|
[8] |
Khatibani A B and Rozati S 2014 Mater. Sci. Semicond. Process. 18 80
|
[9] |
Dhonge B P, Mathews T, Sundari S T, Thinaharan C, Kamruddin M, Dash S and Tyagi A 2011 Appl. Surf. Sci. 258 1091
|
[10] |
Bouifoulen A, Edely M, Errien N, Kassiba A, Outzourhit A, Makowska-Janusik M, Gautier N, Lajaunie L and Oueriagli A 2011 Thin Solid Films 519 2141
|
[11] |
Evans B D 1995 J. Nucl. Mater. 219 202
|
[12] |
Gillet E and Ealet B 1992 Surf. Sci. 273 427
|
[13] |
Boumaza A, Djelloul A and Guerrab F 2010 Powder Technol. 201 177
|
[14] |
Kortov V, Ermakov A, Zatsepin A and Nikiforov S 2008 Radiat. Meas. 43 341
|
[15] |
Trinkler L, Berzina B, Jakimovica D, Grabis J and Steins I 2010 Opt. Mater. 32 789
|
[16] |
Surdo A, Kortov V and Pustovarov V 2001 Radiat. Meas. 33 587
|
[17] |
Caulfield K J, Cooper R and Boas J F 1993 Phys. Rev. B 47 55
|
[18] |
Springis M and Valbis J 1984 Phys. Status Solidi (b) 123 335
|
[19] |
Ramírez R, Tardío M, González R, Munoz Santiuste J and Kokta M 2007 J. Appl. Phys. 101 3520
|
[20] |
Ikeda S and Uchino T 2014 J. Phys. Chem. C 118 4346
|
[21] |
Ramírez R, Tardío M, González R, Chen Y and Kokta M 2005 Appl. Phys. Lett. 86 1914
|
[22] |
Carrasco J, Lopez N, Sousa C and Illas F 2005 Phys. Rev. B 72 054109
|
[23] |
Kabler M, Crawford J and Slifkin L M 1972 Plenum New York 291
|
[24] |
Liu Y L, Liu G P, Wang W Y, Qi Z Q, Chen C Q and Wang Z G 2016 Chin. Phys. B 25 87801
|
[25] |
Brewer J, Jeffries B and Summers G P 1980 Phys. Rev. B 22 4900
|
[26] |
Perevalov T, Tereshenko O, Gritsenko V, Pustovarov V, Yelisseyev A, Park C, Han J H and Lee C 2010 J. Appl. Phys. 108 013501
|
[27] |
Breysse M, Coudurier G, Claudel B and Faure L 1982 J. Lumin. 26 239
|
[28] |
Malo M, Morono A and Hodgson E 2014 Fusion Eng. Des. 89 2179
|
[29] |
Amirsalari A and Shayesteh S F 2015 Superlattices Microstruct. 82 507
|
[30] |
Kulis P, Springis M, Tale I, Vainer V and Valbis J 1981 Phys. Status Solidi (b) 104 719
|
[31] |
Kulis P, Springis M, Tale I and Valbis J 1980 Phys. Status Solidi (a) 58 225
|
[32] |
Lee K H, Holmberg G and Crawford J 1977 Phys. Status Solidi (a) 39 669
|
[33] |
Kortov V, Bessonova T, Akselrod M and Milman I 1985 Phys. Status Solidi (a) 87 629
|
[34] |
Flerov A, Flerov V and Litvinov L 1991 J. Appl. Spectrosc. 54 167
|
[35] |
Huang G, Wu X, Yang L, Shao X, Siu G and Chu P 2005 Appl. Phys. A 81 1345
|
[36] |
El Mir L, Amlouk A and Barthou C 2006 J. Phys. Chem. Solids 67 2395
|
[37] |
Trinkler L, Berzina B, Jakimovica D, Grabis J and Steins I 2011 Opt. Mater. 33 817
|
[38] |
Gorbunov S, Cholakh S, Pustovarov V, Yakovlev V Y, Zatsepin A and Kucharenko A 2005 Phys. Status Solidi (c) 2 351
|
[39] |
Li B, Hinklin T, Laine R and Rand S 2007 J. Lumin. 122 345
|
[40] |
Pustovarov V, Aliev V S, Perevalov T, Gritsenko V and Eliseev A 2010 J. Exp. Theor. Phys. 111 989
|
[41] |
Matsunaga K, Tanaka T, Yamamoto T and Ikuhara Y 2003 Phys. Rev. B 68 085110
|
[42] |
Chen W, Song P, Dong Y, Zhang Y and Hua W 2013 Chin. Sci. Bull. 58 1964
|
[43] |
Muthe K, Sudarshan K, Pujari P, Kulkarni M, Rawat N, Bhatt B and Gupta S 2009 J. Phys. D: Appl. Phys. 42 105405
|
[44] |
Uenaka Y and Uchino T 2011 Phys. Rev. B 83 195108
|
[45] |
Uzun E, Yarar Y and Yazici A N 2011 J. Lumin. 131 2625
|
[46] |
Vreeker R, Kuzakov S and Glasbeek M 1985 Solid State Commun. 55 1039
|
[47] |
Eglitis R, Kuklja M, Kotomin E, Stashans A and Popov A 1996 Comput. Mater. Sci. 5 298
|
[48] |
Surdo A and Kortov V 2004 Radiat. Meas. 38 667
|
[49] |
Stashans A, Kotomin E and Calais J L 1994 Phys. Rev. B 49 14854
|
[50] |
Bartram R, Swenberg C and Fournier J 1965 Phys. Rev. 139 A941
|
[51] |
Sokol A A, Walsh A and Catlow C R A 2010 Chem. Phys. Lett. 492 44
|
[52] |
Lee K, Holmberg G and Crawford J 1976 Solid State Commun. 20 183
|
[53] |
Rao T G, Bhatt B and Page P 2008 Radiat. Meas. 43 295
|
[54] |
El-Mansy M, Diefallah E and Shash N 1995 Radiat. Phys. Chem. 45 151
|
[55] |
Varley J, Janotti A, Franchini C and Van de Walle C 2012 Phys. Rev. B 85 081109
|
[56] |
Jacobs P W and Kotomin E A 1994 J. Am. Ceram. Soc. 77 2505
|
[57] |
Otto T N 2013 Optoelectronic Properties of Lead Selenide Quantum Dot Thin Films
|
[58] |
Li Z and Huang K 2007 J. Lumin. 127 435
|
[59] |
Ortiz A, Alonso J, Pankov V and Albarran D 1999 J. Lumin. 81 45
|
[60] |
Shen Y F, Suib S L, Deeba M and Koermer G 1994 J. Catal. 146 483
|
[61] |
Stoyanovskii V and Snytnikov V 2009 Kinet. Catal. 50 450
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|