Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(2): 028901    DOI: 10.1088/1674-1056/26/2/028901
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Scaling of weighted spectral distribution in weighted small-world networks

Bo Jiao(焦波)1, Xiao-Qun Wu(吴晓群)2
1 Luoyang Electronic Equipment Test Center, Luoyang 471003, China;
2 School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China
Abstract  Many real-world systems can be modeled by weighted small-world networks with high clustering coefficients. Recent studies for rigorously analyzing the weighted spectral distribution (WSD) have focused on unweighted networks with low clustering coefficients. In this paper, we rigorously analyze the WSD in a deterministic weighted scale-free small-world network model and find that the WSD grows sublinearly with increasing network order (i.e., the number of nodes) and provides a sensitive discrimination for each input of this model. This study demonstrates that the scaling feature of the WSD exists in the weighted network model which has high and order-independent clustering coefficients and reasonable power-law exponents.
Keywords:  weighted spectral distribution      weighted small-world network      scaling  
Received:  26 September 2016      Revised:  01 November 2016      Accepted manuscript online: 
PACS:  89.75.Fb (Structures and organization in complex systems)  
  89.75.Da (Systems obeying scaling laws)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61402485, 61573262, and 61303061).
Corresponding Authors:  Bo Jiao     E-mail:  jiaoboleetc@outlook.com

Cite this article: 

Bo Jiao(焦波), Xiao-Qun Wu(吴晓群) Scaling of weighted spectral distribution in weighted small-world networks 2017 Chin. Phys. B 26 028901

[1] Fay D, Haddadi H, Thomason A, Moore A W, Mortier R, Jamakovic A, Uhlig S and Rio M 2010 IEEE ACM T. Network 18 164
[2] Fay D, Haddadi H, Uhlig S, Kilmartin L, Moore A W, Kunegis J and Lliofotou M 2011 Comput. Netw. 55 3458
[3] Haddadi H, Fay D, Jamakovic A, Maennel O, Moore A W, Mortier R and Uhlig S 2009 21st International Teletraffic Congress, September 15-17, Paris, France, p. 1
[4] Jiao B, Zhou Y, Du J, Huang C, Lu Z and Liu Y 2014 IET Commun. 8 2845
[5] Jiao B, Shi J, Wu X, Nie Y, Huang C, Du J, Zhou Y, Guo R and Tao Y 2016 Chaos 26 023110
[6] Jiao B, Nie Y, Shi J, Huang C, Zhou Y, Du J, Guo R and Tao Y 2016 Physica A 451 632
[7] Jiao B, Nie Y, Huang C, Du J, Guo R, Huang F and Shi J 2016 Chin. Phys. B 25 058901
[8] Jiao B and Shi J 2016 Comput. Commun. 76 77
[9] Jiao B, Nie Y, Shi J, Lu G, Zhou Y and Du J 2016 Telecommun. Syst. 62 231
[10] Burda Z, Correia J D and Krzywicki A 2001 Phys. Rev. E 64 046118
[11] Dorogovtsev S N, Goltsev A V and Mendes J F F 2002 Phys. Rev. E 65 066122
[12] Chung F and Radcliffe M 2011 Electron. J. Comb. 18 215
[13] Zou Z Y, Liu P, Li L and Gao J Z 2012 Chin. Phys. B 21 028904
[14] Xu X L, Liu C P and He D R 2016 Chin. Phys. Lett. 33 048901
[15] Guo J L 2014 Chin. Phys. B 23 070206
[16] Shu P P, Wang W, Tang M and Shang M S 2015 Acta Phys. Sin. 64 208901 (in Chinese)
[17] Zhang J Y, Sun W G and Chen G R 2012 Chin. Phys. B 21 038901
[18] Sun W G, Zhang J Y and Chen G R 2013 Chin. Phys. B 22 108904
[19] Dai M, Hou J, Gao J, Su W, Xi L and Ye D 2016 Chaos, Solitons & Fractals 87 268
[20] Barab'si A L, Ravasz E and Vicsek T 2001 Physica A 299 559
[21] Zhang Z, Rong L and Guo C 2006 Physica A 363 567
[22] Zhang Z, Rong L and Zhou S 2007 Physica A 377 329
[23] Zhang Y, Zhang Z, Zhou S and Guan J 2010 Physica A 389 3316
[24] Comellas F and Miralles A 2010 Phys. Rev. E 81 061103
[25] Dai M, Chen D, Dong Y and Liu J 2012 Physica A 391 6165
[26] Sun Y, Dai M and Xi L 2014 Physica A 407 110
[27] Dai M, Li X and Xi L 2013 Chaos 23 033106
[28] Zhang Z, Lin Y and Guo X 2015 Phys. Rev. E 91 062808
[29] Zhang Z, Sheng Y, Hu Z and Chen G 2012 Chaos 22 043129
[30] Dai M, Wang X and Chen D 2012 Chaos, Solitons & Fractals 45 137
[31] Zhang Y, Aziz-Alaoui M A, Bertelle C, Zhou S and Wang W 2014 J. Phys. A: Math. Theor. 47 225003
[32] Zhang Y, Zhou S, Zhang Z, Guan J and Zhou S 2013 Phys. Rev. E 87 032133
[33] Barrat A, Barthelemy M and Vespignani A 2004 Phys. Rev. E 70 066149
[1] Energy levels and magnetic dipole transition parameters for the nitrogen isoelectronic sequence
Mu-Hong Hu(胡木宏), Nan Wang(王楠), Pin-Jun Ouyang(欧阳品均),Xin-Jie Feng(冯新杰), Yang Yang(杨扬), and Chen-Sheng Wu(武晨晟). Chin. Phys. B, 2022, 31(9): 093101.
[2] Integral cross sections for electron impact excitations of argon and carbon dioxide
Shu-Xing Wang(汪书兴) and Lin-Fan Zhu(朱林繁). Chin. Phys. B, 2022, 31(8): 083401.
[3] Anomalous Hall effect of facing-target sputtered ferrimagnetic Mn4N epitaxial films with perpendicular magnetic anisotropy
Zeyu Zhang(张泽宇), Qiang Zhang(张强), and Wenbo Mi(米文博). Chin. Phys. B, 2022, 31(4): 047305.
[4] Observation of quadratic magnetoresistance in twisted double bilayer graphene
Yanbang Chu(褚衍邦), Le Liu(刘乐), Yiru Ji(季怡汝), Jinpeng Tian(田金朋), Fanfan Wu(吴帆帆), Jian Tang(汤建), Yalong Yuan(袁亚龙), Yanchong Zhao(赵岩翀), Xiaozhou Zan(昝晓州), Rong Yang(杨蓉), Kenji Watanabe, Takashi Taniguchi, Dongxia Shi(时东霞), Wei Yang(杨威), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(10): 107201.
[5] Solving the time-dependent Schrödinger equation by combining smooth exterior complex scaling and Arnoldi propagator
Shun Wang(王顺) and Wei-Chao Jiang(姜维超). Chin. Phys. B, 2022, 31(1): 013201.
[6] Finite density scaling laws of condensation phase transition in zero-range processes on scale-free networks
Guifeng Su(苏桂锋), Xiaowen Li(李晓温), Xiaobing Zhang(张小兵), Yi Zhang(张一). Chin. Phys. B, 2020, 29(8): 088904.
[7] Energy scaling and extended tunability of a ring cavity terahertz parametric oscillator based on KTiOPO4 crystal
Yuye Wang(王与烨), Yuchen Ren(任宇琛), Degang Xu(徐德刚), Longhuang Tang(唐隆煌), Yixin He(贺奕焮), Ci Song(宋词), Linyu Chen(陈霖宇), Changzhao Li(李长昭), Chao Yan(闫超), Jianquan Yao(姚建铨). Chin. Phys. B, 2018, 27(11): 114213.
[8] Ultrasound wave propagation in glass-bead packing under isotropic compression and uniaxial shear
Zhi-Gang Zhou(周志刚), Yi-Min Jiang(蒋亦民), Mei-Ying Hou(厚美瑛). Chin. Phys. B, 2017, 26(8): 084502.
[9] Equivalent electron correlations in nonsequential double ionization of noble atoms
Shansi Dong(董善思), Qiujing Han(韩秋静), Jingtao Zhang(张敬涛). Chin. Phys. B, 2017, 26(2): 023202.
[10] Linear synchronization and circuit implementation of chaotic system with complete amplitude control
Chun-Biao Li(李春彪), Wesley Joo-Chen Thio, Julien Clinton Sprott, Ruo-Xun Zhang(张若洵), Tian-Ai Lu(陆天爱). Chin. Phys. B, 2017, 26(12): 120501.
[11] Studies on convergence and scaling law of Thomson backscattering spectra in strong fields
Han-Zhang Xie(谢含章), Chun Jiang(蒋纯), Bai-Song Xie(谢柏松). Chin. Phys. B, 2017, 26(12): 124101.
[12] Scaling dependence of memory windows and different carrier charging behaviors in Si nanocrystal nonvolatile memory devices
Jie Yu(于杰), Kun-ji Chen(陈坤基), Zhong-yuan Ma(马忠元), Xin-xin Zhang(张鑫鑫), Xiao-fan Jiang(江小帆), Yang-qing Wu(吴仰晴), Xin-fan Huang(黄信凡), Shunri Oda. Chin. Phys. B, 2016, 25(9): 097304.
[13] Stability of weighted spectral distribution in a pseudo tree-like network model
Bo Jiao(焦波), Yuan-ping Nie(聂原平), Cheng-dong Huang(黄赪东), Jing Du(杜静), Rong-hua Guo(郭荣华), Fei Huang(黄飞), Jian-mai Shi(石建迈). Chin. Phys. B, 2016, 25(5): 058901.
[14] Static and dynamic properties of polymer brush with topological ring structures: Molecular dynamic simulation
Wu-Bing Wan(万吴兵), Hong-Hong Lv(吕红红), Holger Merlitz(候格), Chen-Xu Wu(吴晨旭). Chin. Phys. B, 2016, 25(10): 106101.
[15] Structural and robustness properties of smart-city transportation networks
Zhang Zhen-Gang (张振刚), Ding Zhuo (丁卓), Fan Jing-Fang (樊京芳), Meng Jun (孟君), Ding Yi-Min (丁益民), Ye Fang-Fu (叶方富), Chen Xiao-Song (陈晓松). Chin. Phys. B, 2015, 24(9): 090201.
No Suggested Reading articles found!