Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(2): 029201    DOI: 10.1088/1674-1056/26/2/029201
GEOPHYSICS, ASTRONOMY, AND ASTROPHYSICS Prev  

Effect of air breakdown on microwave pulse energy transmission

Pengcheng Zhao(赵朋程)1, Lixin Guo(郭立新)1, Panpan Shu(舒盼盼)2
1 School of Physics and Optoelectronic Engineering, Xidian University, Xi'an 710071, China;
2 School of Sciences, Xi'an University of Technology, Xi'an 710054, China
Abstract  The energy transmission of the long microwave pulse for the frequency of 2.45 GHz and 5.8 GHz is studied by using the electron fluid model, where the rate coefficients are deduced from the Boltzmann equation solver named BOLSIG+. The breakdown thresholds for different air pressures and incident pulse parameters are predicted, which show good agreement with the experimental data. Below the breakdown threshold, the transmitted pulse energy is proportional to the square of the incident electric field amplitude. When the incident electric field amplitude higher than the breakdown threshold increases, the transmitted pulse energy decreases monotonously at a high air pressure, while at a low air pressure it first decreases and then increases. We also compare the pulse energy transmission for the frequency of 2.45 GHz with the case of 5.8 GHz.
Keywords:  air breakdown      pulse energy transmission      electron fluid model  
Received:  15 October 2016      Revised:  30 October 2016      Accepted manuscript online: 
PACS:  92.60.Ta (Electromagnetic wave propagation)  
  51.50.+v (Electrical properties)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61501358) and the Fundamental Research Funds for the Central Universities, China.
Corresponding Authors:  Pengcheng Zhao     E-mail:  pczhao@xidian.edu.cn

Cite this article: 

Pengcheng Zhao(赵朋程), Lixin Guo(郭立新), Panpan Shu(舒盼盼) Effect of air breakdown on microwave pulse energy transmission 2017 Chin. Phys. B 26 029201

[1] Matsumoto H 2002 IEEE Microwave Mag. 3 36
[2] Sasaki S, Tanaka K and Maki K 2013 IEEE Proc. 101 1438
[3] Ford P J, Beeson S R, Krompholz H G and Neuber A A 2012 Phys. Plasmas 19 073503
[4] Zhao P C, Guo L X and Li H M 2015 Chin. Phys. B 24 105102
[5] Zhao P C, Liao C and Feng J 2015 Chin. Phys. B 24 025101
[6] Wang H H, Liu D G, Liu L Q and Meng L 2014 Chin. Phys. B 23 115101
[7] Cook A M, Hummelt J S, Shapiro M A and Temkin R J 2013 Phys. Plasmas 20 043507
[8] Yang Y, Yuan C and Qian B 2012 Phys. Plasmas 19 122101
[9] Nam S K and Verboncoeur J P 2009 Comput. Phys. Commun. 180 628
[10] Boeuf J P, Chaudhury B and Zhu G Q 2010 Phys. Rev. Lett. 104 015002
[11] Hagelaar G J M and Pitchford L C 2005 Plasma Sources Sci. Technol. 14 722
[12] Yee J H, Alvarez R A, Mayhall D J, Byrne D P and Degroot J 1986 Phys. Fluids 29 1938
[13] Zhao P, Liao C, Yang D and Zhong X 2014 Chin. Phys. B 23 055101
[14] Zhao P, Liao C, Lin W, Chang L and Fu H 2011 Phys. Plasmas 18 102111
[15] Tetenbaum S J, MacDonald A D and Bandel H W 1971 J. Appl. Phys. 42 5871
[16] Cook A, Shapiro M and Temkin R 2010 Appl. Phys. Lett. 97 011504
[17] Lau Y Y, Verboncoeur J P and Kim H C 2006 Appl. Phys. Lett. 89 261501
[1] Air breakdown induced by the microwave with two mutually orthogonal and heterophase electric field components
Pengcheng Zhao(赵朋程), Lixin Guo(郭立新). Chin. Phys. B, 2017, 26(9): 099201.
[2] Effect of aperture field distribution on the maximum radiated power at atmospheric pressure
Pengcheng Zhao(赵朋程), Lixin Guo(郭立新). Chin. Phys. B, 2017, 26(11): 115101.
[3] Effect of microwave frequency on plasma formation in air breakdown at atmospheric pressure
Zhao Peng-Cheng (赵朋程), Guo Li-Xin (郭立新), Li Hui-Min (李慧敏). Chin. Phys. B, 2015, 24(10): 105102.
[4] A STUDY OF HIGH POWER MICROWAVE AIR BREAKDOWN
Liu Guo-zhi (刘国治), Liu Jing-yue (刘静月), Huang Wen-hua (黄文华), Zhou Jin-shan (周金山), Song Xiao-xin (宋晓欣), Ning Hui (宁辉). Chin. Phys. B, 2000, 9(10): 757-763.
No Suggested Reading articles found!