ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Observation of wavelength-switchable solitons in an all-polarization-maintaining erbium-doped fiber cavity based on graphene saturable absorber reflector |
Kuo Meng(孟阔), Lian-Qing Zhu(祝连庆), Fei Luo(骆飞) |
Beijing Engineering Research Center of Optoelectronics Information and Instrument, Beijing Key Laboratory of Optoelectronic Measurement Technology, Beijing Laboratory for Biomedical Detection Technology and Instrument, Beijing Information Science and Technology University, Beijing 100192, China |
|
|
Abstract We present the generation of wavelength-switchable single-polarization solitons in an all-polarization-maintaining erbium-doped fiber laser mode-locked by a graphene saturable absorber. Ultrashort pulses centered at the wavelength of 1531.6 nm with the duration of 816 fs and centered at the wavelength of 1557.8 nm with the duration of 402 fs are separately obtained from the same fiber laser cavity. The cavity loss adjusted by the gold reflector plays a crucial role in wavelength switching.
|
Received: 01 July 2016
Revised: 09 September 2016
Accepted manuscript online:
|
PACS:
|
42.55.Wd
|
(Fiber lasers)
|
|
42.60.Fc
|
(Modulation, tuning, and mode locking)
|
|
Fund: Project supported by the Program for Changjiang Scholars and Innovative Research Team in University, China (Grant No. PCSIRT:1212), the Key Grant Science and Technology Planning Project of Beijing, China (Grant Nos. PXM2013_014224_000077 and PXM2012_014224_000019), and the Science and Technology Planning Project of Beijing Municipal Commission of Education, China (Grant No. KM201611232008). |
Corresponding Authors:
Lian-Qing Zhu
E-mail: zhulianqing@sina.com
|
Cite this article:
Kuo Meng(孟阔), Lian-Qing Zhu(祝连庆), Fei Luo(骆飞) Observation of wavelength-switchable solitons in an all-polarization-maintaining erbium-doped fiber cavity based on graphene saturable absorber reflector 2017 Chin. Phys. B 26 014205
|
[1] |
Zhang H, Zheng C, Yan P, Gong M, Xiao Q and Zhao Q 2012 Laser Phys. Lett. 9 744
|
[2] |
Shen X, Zhang H, Hao H, Li D, Li Q, Yan P and Gong M 2015 Opt. Commun. 345 168
|
[3] |
Zhang H, Shen X, Chen D, Zheng C, Yan P and Gong M 2014 IEEE Photon. Technol. Lett. 26 2295
|
[4] |
Liu M, Zhang H, Gong M L, Zhao Y J, Cheng W Y, Meng K, Zheng C and Chen Y Z 2014 Chin. Phys. B 23 044214
|
[5] |
Lavieja C, Jarabo S, Donagueda M and Sola I J 2013 Optical Fiber Technol. 19 476
|
[6] |
Zhu F, Hundertmark H, Kolomenskii A A, Strohaber J, Holzwarth R and Schuessler H A 2013 Opt. Lett. 38 2360
|
[7] |
Mollenauer L F and Stolen R H 1984 Opt. Lett. 9 13
|
[8] |
Chong A, Renninger W H and Wise F W 2007 Opt. Lett. 32 2408
|
[9] |
Cabasse A, Gaponov D, Ndao K, Khadour A, Oudar J and Martel G 2011 Opt. Lett. 36 2620
|
[10] |
Ma D, Cai Y, Zhou C, Zong W, Chen L and Zhang Z 2010 Opt. Lett. 35 2858
|
[11] |
Kurita T, Yoshida H, Kawashima T and Miyanaga N 2012 Opt. Lett. 37 3972
|
[12] |
Okhotnikov O G, Araujo F M and Salcedo J R 1994 Appl. Phys. Lett. 65 2910
|
[13] |
Yamashita S and Nishihara M 2001 IEEE J. Sel. Top. Quant. 7 41
|
[14] |
Man W S, Tam H Y, Demokan M S, Wai P K A and Tang D Y 2000 J. Opt. Soc. Am. B 17 28
|
[15] |
Yan Z, Li X, Tang Y, Shum P P, Yu X, Zhang Y and Wang Q J 2015 Opt. Express 23 4369
|
[16] |
Song C, Xu W, Luo Z, Luo A and Chen W 2009 Opt. Commun. 282 4408
|
[17] |
Xu H, Lei D, Wen S, Fu X, Zhang J, Shao Y, Zhang L, Zhang H and Fan D 2008 Opt. Express 16 7169
|
[18] |
Zhang H, Tang D Y, Wu X, Zhao L M, Bao Q L, Loh K P, Lin B and Tjin S C 2010 Laser Phys. Lett. 7 591
|
[19] |
Zhao G Z, Xiao X S, Meng F, Mei J W and Yang C X 2013 Chin. Phys. B 22 104205
|
[20] |
Sobon G, Sotor J, Pasternak I, Krajewska A, Strupinski W and Abramski K 2015 Opt. Express 23 9339
|
[21] |
Xu J, Wu S, Liu J, Li Y, Ren J, Yang Q and Wang P 2014 IEEE Photon. Technol. Lett. 26 346
|
[22] |
Nielsen C K, Ortac B, Schreiber T, Limpert J, Hohmuth R, Richter W and Tunnermann A 2005 Opt. Express 13 9346
|
[23] |
Schreiber T, Nielsen C K, Ortac B, Limpert J and Tunnermann A 2006 Opt. Lett. 31 574
|
[24] |
Zhang H, Lu S B, Zheng J. Du J, Wen S C, Tang D Y and Loh K P 2014 Opt. Express 22 7249
|
[25] |
Lu S B, Miao L L, Guo Z N, Qi X, Zhao C J, Zhang H, Wen S C, Tang D Y and Fan D Y 2015 Opt. Express 23 11183
|
[26] |
Sobon G 2015 Photon. Res. 3 A56
|
[27] |
Davide S, Cafiso D, Ugolotti E, Schmidt A, Petrov V, Griebner U, Agnesi A, Cho W B, Jung B H, Rotermund F, Bae S, Hong B H, Reali G and Pirzio F 2013 Opt. Lett. 38 1745
|
[28] |
Chen C J, Wai P K A and Menyuk C R 1992 Opt. Lett. 17 417
|
[29] |
Tang D Y, Zhao L M, Zhao B and Liu A Q 2005 Phys. Rev. A 72 043816
|
[30] |
Wu J, Tang D Y, Zhao L M and Chan C C 2006 Phys. Rev. E 74 046605
|
[31] |
Bass M and Mahajan V N 2010 Handbook of Optics (3th Edn.) (New York:McGraw-Hill Professional Press)
|
[32] |
Dennis M and Duling I 1994 IEEE J. Quantum Electron. 30 1469
|
[33] |
Sobon G, Sotor J and Abramski K M 2012 Laser Phys. Lett. 9 581
|
[34] |
Liu X 2011 Phys. Rev. A 84 023835
|
[35] |
Zhang S M, Meng Q S and Zhao G Z 2010 Eur. Phys. J. D 60 383
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|