Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(12): 128101    DOI: 10.1088/1674-1056/25/12/128101
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Nanoscale spatial phase modulation of GaAs growth in V-grooved trenches on Si (001) substrate

Shi-Yan Li(李士颜), Xu-Liang Zhou(周旭亮), Xiang-Ting Kong(孔祥挺), Meng-Ke Li(李梦珂), Jun-Ping Mi(米俊萍), Meng-Qi Wang(王梦琦), Jiao-Qing Pan(潘教青)
Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
Abstract  

This letter reports the nanoscale spatial phase modulation of GaAs growth in V-grooved trenches fabricated on a Si (001) substrate by metal-organic vapor-phase epitaxy. Two hexagonal GaAs regions with high density of stacking faults parallel to Si {111} surfaces are observed. A strain-relieved and defect-free cubic phase GaAs was achieved above these highly defective regions. High-resolution transmission electron microscopy and fast Fourier transforms analysis were performed to characterize these regions of GaAs/Si interface. We also discussed the strain relaxation mechanism and phase structure modulation of GaAs selectively grown on this artificially manipulated surface.

Keywords:  phase modulation      GaAs      grooves      Si  
Received:  20 December 2015      Revised:  25 August 2016      Accepted manuscript online: 
PACS:  81.05.Ea (III-V semiconductors)  
  81.05.Cy (Elemental semiconductors)  
  64.75.Qr (Phase separation and segregation in semiconductors)  
Fund: 

Project supported by the National Science and Technology Major Project of Science and Technology of China (Grant No. 2011ZX02708) and the National Natural Science Foundation of China (Grant No. 61504137).

Corresponding Authors:  Jiao-Qing Pan     E-mail:  jqpan@semi.ac.cn

Cite this article: 

Shi-Yan Li(李士颜), Xu-Liang Zhou(周旭亮), Xiang-Ting Kong(孔祥挺), Meng-Ke Li(李梦珂), Jun-Ping Mi(米俊萍), Meng-Qi Wang(王梦琦), Jiao-Qing Pan(潘教青) Nanoscale spatial phase modulation of GaAs growth in V-grooved trenches on Si (001) substrate 2016 Chin. Phys. B 25 128101

[1] Zhou X, Tang C W, Li Q and Lau K M 2012 Phys. Status Solidi A 209 1380
[2] Li J Z, Bai J, Park J S, Adekore B, Fox K, Carroll M and Shellenbarger Z 2007 Appl. Phys. Let. 91 021114
[3] Ghosh R N, Griffing B and Ballantyne J M 1986 Appl. Phys. Lett. 48 370
[4] Chen H, Zhang Z, Huang B, Mao L and Zhang Z 2015 J. Semicond. 36 121001
[5] Xi X W, Chai C C, Liu Y, Yang Y T, Fan Q Y and Shi C L 2016 Chin. Phys. B 25 088504
[6] Wu L S, Zhao Y, Shen H C, Zhang Y T and Chen T S 2016 Chin. Phys. B 25 067306
[7] Zhou X, Pan J, Liang R, Wang J and Wang W 2014 J. Semicond. 35 073002
[8] Krost A, Schnabel R F, Heinrichsdorff F, Rossow U, Bimberg D and Cerva H 1994 J. Cryst. Growth 145 314
[9] Krost A, Heinrichsdorff F and Bimberg D 1994 Appl. Phys. Lett. 64 769
[10] Paladugu M, Merckling C, Loo R and Richard O 2012 Cryst. Growth Des. 12 4696
[11] Wang G, Leys M, Loo R and Richard O 2014 Appl. Phys. Lett. 105 062101
[12] Li Shi Y, Zhou X L, Kong X T, Li M K, Mi J P, Bian J, Wang W and Pan J Q 2015 Chin. Phys. Lett. 32 028101
[13] Lee S C, Sun X Y, Hersee S D and Brueck S R J 2004 Appl. Phys. Lett. 8 2079
[14] Lee S C, Pattada B and Hersee S D 2005 J. Quantum Electron. 41 596
[15] Zhao D, Zhao D, Jiang D, Liu Z and Zhu J 2015 J. Semicond. 36 063003
[16] Li S, Zhou X, Kong X, Li M and Mi J 2015 Appl. Phys. Lett. 108 021902
[17] Bordel D, Guimard D, Rajesh M, Nishioka M and Arakawa Y 2010 Appl. Phys. Lett. 96 043101
[18] Xu Q, Hsu J W P, Carlin J A, Sieg R M, Boeckl J J and Ringel S A 1999 Appl. Phys. Lett. 75 2111
[19] Yeh C Y, Lu Z W, Froyen S and Zunger A 1992 Phys. Rev. B 46 10086
[20] Krost A, Heinrichsdorff F, Bimberg D and Cerva H 1994 Appl. Phys. Lett. 64 769
[21] Dynna M and Marty A 1998 Acta Mater. 46 1087
[1] Simulation of single bubble dynamic process in pool boiling process under microgravity based on phase field method
Chang-Sheng Zhu(朱昶胜), Bo-Rui Zhao(赵博睿), Yao Lei(雷瑶), and Xiu-Ting Guo(郭秀婷). Chin. Phys. B, 2023, 32(4): 044702.
[2] Recent progress on the planar Hall effect in quantum materials
Jingyuan Zhong(钟景元), Jincheng Zhuang(庄金呈), and Yi Du(杜轶). Chin. Phys. B, 2023, 32(4): 047203.
[3] Strong spin frustration and magnetism in kagomé antiferromagnets LnCu3(OH)6Br3 (Ln = Nd, Sm, and Eu)
Jin-Qun Zhong(钟金群), Zhen-Wei Yu(余振伟), Xiao-Yu Yue(岳小宇), Yi-Yan Wang(王义炎), Hui Liang(梁慧), Yan Sun(孙燕), Dan-Dan Wu(吴丹丹), Zong-Ling Ding(丁宗玲), Jin Sun(孙进), Xue-Feng Sun(孙学峰), and Qiu-Ju Li(李秋菊). Chin. Phys. B, 2023, 32(4): 047505.
[4] SiC gate-controlled bipolar field effect composite transistor with polysilicon region for improving on-state current
Baoxing Duan(段宝兴), Kaishun Luo(罗开顺), and Yintang Yang(杨银堂). Chin. Phys. B, 2023, 32(4): 047702.
[5] A 4H-SiC trench IGBT with controllable hole-extracting path for low loss
Lijuan Wu(吴丽娟), Heng Liu(刘恒), Xuanting Song(宋宣廷), Xing Chen(陈星), Jinsheng Zeng(曾金胜), Tao Qiu(邱滔), and Banghui Zhang(张帮会). Chin. Phys. B, 2023, 32(4): 048503.
[6] Conductive path and local oxygen-vacancy dynamics: Case study of crosshatched oxides
Z W Liang(梁正伟), P Wu(吴平), L C Wang(王利晨), B G Shen(沈保根), and Zhi-Hong Wang(王志宏). Chin. Phys. B, 2023, 32(4): 047303.
[7] Positon and hybrid solutions for the (2+1)-dimensional complex modified Korteweg-de Vries equations
Feng Yuan(袁丰) and Behzad Ghanbari. Chin. Phys. B, 2023, 32(4): 040201.
[8] Meshfree-based physics-informed neural networks for the unsteady Oseen equations
Keyi Peng(彭珂依), Jing Yue(岳靖), Wen Zhang(张文), and Jian Li(李剑). Chin. Phys. B, 2023, 32(4): 040208.
[9] Precision measurement and suppression of low-frequency noise in a current source with double-resonance alignment magnetometers
Jintao Zheng(郑锦韬), Yang Zhang(张洋), Zaiyang Yu(鱼在洋), Zhiqiang Xiong(熊志强), Hui Luo(罗晖), and Zhiguo Wang(汪之国). Chin. Phys. B, 2023, 32(4): 040601.
[10] A probability theory for filtered ghost imaging
Zhong-Yuan Liu(刘忠源), Shao-Ying Meng(孟少英), and Xi-Hao Chen(陈希浩). Chin. Phys. B, 2023, 32(4): 044204.
[11] Micromagnetic study of magnetization reversal in inhomogeneous permanent magnets
Zhi Yang(杨质), Yuanyuan Chen(陈源源), Weiqiang Liu(刘卫强), Yuqing Li(李玉卿), Liying Cong(丛利颖), Qiong Wu(吴琼), Hongguo Zhang(张红国), Qingmei Lu(路清梅), Dongtao Zhang(张东涛), and Ming Yue(岳明). Chin. Phys. B, 2023, 32(4): 047504.
[12] Tailoring of thermal expansion and phase transition temperature of ZrW2O8 with phosphorus and enhancement of negative thermal expansion of ZrW1.5P0.5O7.75
Chenjun Zhang(张晨骏), Xiaoke He(何小可), Zhiyu Min(闵志宇), and Baozhong Li(李保忠). Chin. Phys. B, 2023, 32(4): 048201.
[13] Lie symmetry analysis and invariant solutions for the (3+1)-dimensional Virasoro integrable model
Hengchun Hu(胡恒春) and Yaqi Li(李雅琦). Chin. Phys. B, 2023, 32(4): 040503.
[14] Mode characteristics of VCSELs with different shape and size oxidation apertures
Xin-Yu Xie(谢新宇), Jian Li(李健), Xiao-Lang Qiu(邱小浪), Yong-Li Wang(王永丽), Chuan-Chuan Li(李川川), Xin Wei(韦欣). Chin. Phys. B, 2023, 32(4): 044206.
[15] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
No Suggested Reading articles found!