Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(9): 095203    DOI: 10.1088/1674-1056/25/9/095203
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Influence of tip geometry on the spatial resolution of tip enhanced Raman mapping

Chao Zhang(张超)1, Bao-Qin Chen(陈宝琴)2, Zhi-Yuan Li(李志远)1
1. Laboratory of Optical Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2. College of Physics and Optoelectronics, South China University of Technology, Guangzhou 510640, China
Abstract  

In 2013, a breakthrough experiment pushed the Raman mapping of molecules via the tip-enhanced Raman scattering (TERS) technique to a sub-nanometer spatial resolution, going into the single-molecule level. This surprising result was well explained by accounting for the critical role of elastic molecule Rayleigh scattering within a plasmonic nanogap in enhancing both the localization and the intensity level of the Raman scattering signal. In this paper, we theoretically explore the influence of various geometric factors of the TERS system on the spatial resolution of Raman mapping, such as the tip curvature radius, tip conical angle, tip-substrate distance, and tip-molecule vertical distance. This investigation can help to find out the most critical geometric factor influencing the spatial resolution of TERS and march along in the right direction for further improving the performance of the TERS system.

Keywords:  tip-enhanced Raman scattering      Rayleigh scattering      surface plasmon resonance  
Received:  23 February 2016      Revised:  24 May 2016      Accepted manuscript online: 
PACS:  52.38.Bv (Rayleigh scattering; stimulated Brillouin and Raman scattering)  
  78.30.-j (Infrared and Raman spectra)  
  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 11434017) and the National Basic Research Program of China (Grant No. 2013CB632704).

Corresponding Authors:  Zhi-Yuan Li     E-mail:  lizy@aphy.iphy.ac.cn

Cite this article: 

Chao Zhang(张超), Bao-Qin Chen(陈宝琴), Zhi-Yuan Li(李志远) Influence of tip geometry on the spatial resolution of tip enhanced Raman mapping 2016 Chin. Phys. B 25 095203

[1] Moskovits M 1985 Rev. Mod. Phys. 57 783
[2] Rycenga M, Xia X, Moran C, Zhou F, Qin D, Li Z Y and Xia Y 2011 Angew. Chem. Int. Edit. 50 5473
[3] McLellan J M, Li Z Y, Siekkinen A and Xia Y 2007 Nano Lett. 7 1013
[4] Wiley B J, Chen Y, McLellan J, Xiong Y, Li Z Y, Ginger D and Xia Y 2007 Nano Lett. 7 1032
[5] Yang Y, Li Z Y, Yamaguchi K, Tanemura M, Huang Z, Jiang D, Chen Y, Zhou F and Nogami M 2012 Nanoscale 4 2663
[6] Li Q, Jiang Y, Han R, Zhong X, Liu S, Li Z Y, Sha Y and Xu D 2013 Small 9 927
[7] Fang J, Du S, Lebedkin S, Li Z Y, Kruk R, Schramm F and Hahn H 2010 Nano Lett. 10 5006
[8] Liu Z, Yang Z, Peng B, Cao C, Zhang C, Xiong Q, Li Z Y and Fang J 2014 Adv. Mater. 26 2431
[9] Xu H X, Bjerneld E J, Kall M and Borjesson L 1999 Phys. Rev. Lett. 83 4357
[10] Xu H, Aizpurua J, Kall M and Apell P 2000 Phys. Rev. E 62 4318
[11] Nie S and Emory S R 1997 Science 275 1102
[12] Kneipp K, Wang Y, Kneipp H, Perelman L T, Itzkan I, Dasari R and Feld M S 1997 Phys. Rev. Lett. 78 1667
[13] Anderson M S 2000 Appl. Phys. Lett. 76 3130
[14] Hartschuh A, Sánchez E J, Xie X S and Novotny L 2003 Phys. Rev. Lett. 90 095503
[15] Steidtner J and Pettinger B 2008 Phys. Rev. Lett. 100 236101
[16] Yano T, Verma P, Saito Y, Ichimura T and Kawata S 2009 Nat. Photon. 3 473
[17] Jiang N, Foley E T, Klingsporn J M, Sonntag M D, Valley N A, Dieringer J A, Seideman T, Schatz G C, Hersam M C and Van Duyne R P 2012 Nano Lett. 12 5061
[18] Sun M, Zhang Z L, Zheng H R and Xu H X 2012 Sci. Rep. 2 647
[19] Zhang R, Zhang Y, Dong Z C, Jiang S, Zhang C, Chen L G, Zhang L, Liao Y, Aizpurua J, Luo Y, Yang J L and Hou J G 2013 Nature 498 82
[20] Duan S, Tian G, Ji Y, Shao J, Dong Z and Luo Y 2015 J. Am. Chem. Soc. 137 9515
[21] Jiang S, Zhang Y, Zhang R, Hu C, Liao M, Luo Y, Yang J, Dong Z and Hou J G 2015 Nat. Nanotechnol. 10 865
[22] Barbry M, Koval P, Marchesin F, Esteban R, Borisov A G, Aizpurua J and Sánchez-Portal D 2015 Nano Lett. 15 3410
[23] Meng L, Yang Z, Chen J and Sun M 2015 Sci. Rep. 5 9240
[24] Zhang C, Chen B Q and Li Z Y 2015 J. Phys. Chem. C 119 11858
[1] Numerical simulation of a truncated cladding negative curvature fiber sensor based on the surface plasmon resonance effect
Zhichao Zhang(张志超), Jinhui Yuan(苑金辉), Shi Qiu(邱石), Guiyao Zhou(周桂耀), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), and Xinzhu Sang(桑新柱). Chin. Phys. B, 2023, 32(3): 034208.
[2] Fiber cladding dual channel surface plasmon resonance sensor based on S-type fiber
Yong Wei(魏勇), Xiaoling Zhao(赵晓玲), Chunlan Liu(刘春兰), Rui Wang(王锐), Tianci Jiang(蒋天赐), Lingling Li(李玲玲), Chen Shi(石晨), Chunbiao Liu(刘纯彪), and Dong Zhu(竺栋). Chin. Phys. B, 2023, 32(3): 030702.
[3] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[4] Numerical study of a highly sensitive surface plasmon resonance sensor based on circular-lattice holey fiber
Jian-Fei Liao(廖健飞), Dao-Ming Lu(卢道明), Li-Jun Chen(陈丽军), and Tian-Ye Huang(黄田野). Chin. Phys. B, 2022, 31(6): 060701.
[5] Characterization of premixed swirling methane/air diffusion flame through filtered Rayleigh scattering
Meng Li(李猛), Bo Yan(闫博), Shuang Chen(陈爽), Li Chen(陈力), and Jin-He Mu(母金河). Chin. Phys. B, 2022, 31(3): 034702.
[6] Multi-frequency focusing of microjets generated by polygonal prisms
Yu-Jing Yang(杨育静), De-Long Zhang(张德龙), and Ping-Rang Hua(华平壤). Chin. Phys. B, 2022, 31(3): 034201.
[7] Sensitivity improvement of aluminum-based far-ultraviolet nearly guided-wave surface plasmon resonance sensor
Tianqi Li(李天琦), Shujing Chen(陈淑静), and Chengyou Lin(林承友). Chin. Phys. B, 2022, 31(12): 124208.
[8] Photonic spin Hall effect and terahertz gas sensor via InSb-supported long-range surface plasmon resonance
Jie Cheng(程杰), Gaojun Wang(王高俊), Peng Dong(董鹏), Dapeng Liu(刘大鹏), Fengfeng Chi(迟逢逢), and Shengli Liu(刘胜利). Chin. Phys. B, 2022, 31(1): 014205.
[9] A multi-band and polarization-independent perfect absorber based on Dirac semimetals circles and semi-ellipses array
Zhiyou Li(李治友), Yingting Yi(易颖婷), Danyang Xu(徐丹阳), Hua Yang(杨华), Zao Yi(易早), Xifang Chen(陈喜芳), Yougen Yi(易有根), Jianguo Zhang(张建国), and Pinghui Wu(吴平辉). Chin. Phys. B, 2021, 30(9): 098102.
[10] Surface plasmon polaritons frequency-blue shift in low confinement factor excitation region
Ling-Xi Hu(胡灵犀), Zhi-Qiang He(何志强), Min Hu(胡旻), and Sheng-Gang Liu(刘盛纲). Chin. Phys. B, 2021, 30(8): 084102.
[11] Optical absorption tunability and local electric field distribution of gold-dielectric-silver three-layered cylindrical nanotube
Ye-Wan Ma(马业万), Zhao-Wang Wu(吴兆旺), Yan-Yan Jiang(江燕燕), Juan Li(李娟), Xun-Chang Yin(尹训昌), Li-Hua Zhang(章礼华), and Ming-Fang Yi(易明芳). Chin. Phys. B, 2021, 30(11): 114207.
[12] Controlled plasmon-enhanced fluorescence by spherical microcavity
Jingyi Zhao(赵静怡), Weidong Zhang(张威东), Te Wen(温特), Lulu Ye(叶璐璐), Hai Lin(林海), Jinglin Tang(唐靖霖), Qihuang Gong(龚旗煌), and Guowei Lyu(吕国伟). Chin. Phys. B, 2021, 30(11): 114215.
[13] Cascaded dual-channel fiber SPR temperature sensor based on liquid and solid encapsulations
Yong Wei(魏勇), Lingling Li(李玲玲), Chunlan Liu(刘春兰), Jiangxi Hu(胡江西), Yudong Su(苏于东), Ping Wu(吴萍), and Xiaoling Zhao(赵晓玲). Chin. Phys. B, 2021, 30(10): 100701.
[14] Photocurrent improvement of an ultra-thin silicon solar cell using the localized surface plasmonic effect of clustering nanoparticles
F Sobhani, H Heidarzadeh, H Bahador. Chin. Phys. B, 2020, 29(6): 068401.
[15] Tunability of Fano resonance in cylindrical core-shell nanorods
Ben-Li Wang(王本立). Chin. Phys. B, 2020, 29(4): 045202.
No Suggested Reading articles found!