PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Prev
Next
|
|
|
Influence of tip geometry on the spatial resolution of tip enhanced Raman mapping |
Chao Zhang(张超)1, Bao-Qin Chen(陈宝琴)2, Zhi-Yuan Li(李志远)1 |
1. Laboratory of Optical Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2. College of Physics and Optoelectronics, South China University of Technology, Guangzhou 510640, China |
|
|
Abstract In 2013, a breakthrough experiment pushed the Raman mapping of molecules via the tip-enhanced Raman scattering (TERS) technique to a sub-nanometer spatial resolution, going into the single-molecule level. This surprising result was well explained by accounting for the critical role of elastic molecule Rayleigh scattering within a plasmonic nanogap in enhancing both the localization and the intensity level of the Raman scattering signal. In this paper, we theoretically explore the influence of various geometric factors of the TERS system on the spatial resolution of Raman mapping, such as the tip curvature radius, tip conical angle, tip-substrate distance, and tip-molecule vertical distance. This investigation can help to find out the most critical geometric factor influencing the spatial resolution of TERS and march along in the right direction for further improving the performance of the TERS system.
|
Received: 23 February 2016
Revised: 24 May 2016
Accepted manuscript online:
|
PACS:
|
52.38.Bv
|
(Rayleigh scattering; stimulated Brillouin and Raman scattering)
|
|
78.30.-j
|
(Infrared and Raman spectra)
|
|
73.20.Mf
|
(Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11434017) and the National Basic Research Program of China (Grant No. 2013CB632704). |
Corresponding Authors:
Zhi-Yuan Li
E-mail: lizy@aphy.iphy.ac.cn
|
Cite this article:
Chao Zhang(张超), Bao-Qin Chen(陈宝琴), Zhi-Yuan Li(李志远) Influence of tip geometry on the spatial resolution of tip enhanced Raman mapping 2016 Chin. Phys. B 25 095203
|
[1] |
Moskovits M 1985 Rev. Mod. Phys. 57 783
|
[2] |
Rycenga M, Xia X, Moran C, Zhou F, Qin D, Li Z Y and Xia Y 2011 Angew. Chem. Int. Edit. 50 5473
|
[3] |
McLellan J M, Li Z Y, Siekkinen A and Xia Y 2007 Nano Lett. 7 1013
|
[4] |
Wiley B J, Chen Y, McLellan J, Xiong Y, Li Z Y, Ginger D and Xia Y 2007 Nano Lett. 7 1032
|
[5] |
Yang Y, Li Z Y, Yamaguchi K, Tanemura M, Huang Z, Jiang D, Chen Y, Zhou F and Nogami M 2012 Nanoscale 4 2663
|
[6] |
Li Q, Jiang Y, Han R, Zhong X, Liu S, Li Z Y, Sha Y and Xu D 2013 Small 9 927
|
[7] |
Fang J, Du S, Lebedkin S, Li Z Y, Kruk R, Schramm F and Hahn H 2010 Nano Lett. 10 5006
|
[8] |
Liu Z, Yang Z, Peng B, Cao C, Zhang C, Xiong Q, Li Z Y and Fang J 2014 Adv. Mater. 26 2431
|
[9] |
Xu H X, Bjerneld E J, Kall M and Borjesson L 1999 Phys. Rev. Lett. 83 4357
|
[10] |
Xu H, Aizpurua J, Kall M and Apell P 2000 Phys. Rev. E 62 4318
|
[11] |
Nie S and Emory S R 1997 Science 275 1102
|
[12] |
Kneipp K, Wang Y, Kneipp H, Perelman L T, Itzkan I, Dasari R and Feld M S 1997 Phys. Rev. Lett. 78 1667
|
[13] |
Anderson M S 2000 Appl. Phys. Lett. 76 3130
|
[14] |
Hartschuh A, Sánchez E J, Xie X S and Novotny L 2003 Phys. Rev. Lett. 90 095503
|
[15] |
Steidtner J and Pettinger B 2008 Phys. Rev. Lett. 100 236101
|
[16] |
Yano T, Verma P, Saito Y, Ichimura T and Kawata S 2009 Nat. Photon. 3 473
|
[17] |
Jiang N, Foley E T, Klingsporn J M, Sonntag M D, Valley N A, Dieringer J A, Seideman T, Schatz G C, Hersam M C and Van Duyne R P 2012 Nano Lett. 12 5061
|
[18] |
Sun M, Zhang Z L, Zheng H R and Xu H X 2012 Sci. Rep. 2 647
|
[19] |
Zhang R, Zhang Y, Dong Z C, Jiang S, Zhang C, Chen L G, Zhang L, Liao Y, Aizpurua J, Luo Y, Yang J L and Hou J G 2013 Nature 498 82
|
[20] |
Duan S, Tian G, Ji Y, Shao J, Dong Z and Luo Y 2015 J. Am. Chem. Soc. 137 9515
|
[21] |
Jiang S, Zhang Y, Zhang R, Hu C, Liao M, Luo Y, Yang J, Dong Z and Hou J G 2015 Nat. Nanotechnol. 10 865
|
[22] |
Barbry M, Koval P, Marchesin F, Esteban R, Borisov A G, Aizpurua J and Sánchez-Portal D 2015 Nano Lett. 15 3410
|
[23] |
Meng L, Yang Z, Chen J and Sun M 2015 Sci. Rep. 5 9240
|
[24] |
Zhang C, Chen B Q and Li Z Y 2015 J. Phys. Chem. C 119 11858
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|