ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Nonlinear compression of picosecond chirped pulse from thin-disk amplifier system through a gas-filled hollow-core fiber |
Jun Lu(陆俊)1,2,3, Zhi-Yuan Huang(黄志远)2,4, Ding Wang(王丁)2, Yi Xu(许毅)2, Yan-Qi Liu(刘彦祺)2, Xiao-Yang Guo(郭晓杨)2, Wen-Kai Li(黎文开)2, Fen-Xiang Wu(吴分翔)2, Zheng-Zheng Liu(刘征征)2, Yu-Xin Leng(冷雨欣)2 |
1. School of Physics Science and Engineering, Tongji University, Shanghai 200092, China;
2. State Key Laboratory of High Field Laser Physics, Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China;
3. University of Chinese Academy of Sciences, Beijing 100049, China;
4. Department of Physics, Shanghai University, Shanghai 200444, China |
|
|
Abstract We theoretically study the nonlinear compression of a 20-mJ, 1030-nm picosecond chirped pulse from the thin-disk amplifier in a krypton gas-filled hollow-core fiber. The chirp from the thin-disk amplifier system has little influence on the initial pulse, however, it shows an effect on the nonlinear compression in hollow-core fiber. We use a large diameter hollow waveguide to restrict undesirable nonlinear effects such as ionization; on the other hand, we employ suitable gas pressure and fiber length to promise enough spectral broadening; with 600-μm, 6-bar (1 bar=105 Pa), 1.8-m hollow fiber, we obtain 31.5-fs pulse. Moreover, we calculate and discuss the optimal fiber lengths and gas pressures with different initial durations induced by different grating compression angles for reaching a given bandwidth. These results are meaningful for a compression scheme from picoseconds to femtoseconds.
|
Received: 30 May 2016
Revised: 15 July 2016
Accepted manuscript online:
|
PACS:
|
42.65.Re
|
(Ultrafast processes; optical pulse generation and pulse compression)
|
|
42.65.Jx
|
(Beam trapping, self-focusing and defocusing; self-phase modulation)
|
|
42.81.Qb
|
(Fiber waveguides, couplers, and arrays)
|
|
42.55.Xi
|
(Diode-pumped lasers)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant No. 2011CB808101), the Funds from the Chinese Academy of Sciences, and the National Natural Science Foundation of China (Grant Nos. 1112790, 10734080, 61221064, 60908008, and 61078037). |
Corresponding Authors:
Yu-Xin Leng
E-mail: lengyuxin@siom.ac.cn
|
Cite this article:
Jun Lu(陆俊), Zhi-Yuan Huang(黄志远), Ding Wang(王丁), Yi Xu(许毅), Yan-Qi Liu(刘彦祺), Xiao-Yang Guo(郭晓杨), Wen-Kai Li(黎文开), Fen-Xiang Wu(吴分翔), Zheng-Zheng Liu(刘征征), Yu-Xin Leng(冷雨欣) Nonlinear compression of picosecond chirped pulse from thin-disk amplifier system through a gas-filled hollow-core fiber 2016 Chin. Phys. B 25 124207
|
[1] |
Bartels A, Dekorsy T and Kurz H 1999 Opt. Lett. 24 996
|
[2] |
Wu P, Sui C and Huang W 2014 Photon. Res. 2 82
|
[3] |
Zapata L E, Reichert F, Hemmer M and Kaertner F X 2016 High Intensity Lasers and High Field Phenomena, March 20-22, 2016, California, USA, p. HM8B. 2
|
[4] |
Grant-Jacob J A, Beecher S J, Parsonage T L, Hua P, Mackenzie J I, Shepherd D P and Eason R W 2016 Opt. Mater. Express 6 91
|
[5] |
Hoy C L, Durr N J, Chen P, Piyawattanametha W, Ra H, Solgaard O and Ben-Yakar A 2008 Opt. Express 16 9996
|
[6] |
Kleinbauer J, Knappe R and Wallenstein R 2005 Appl. Phys. B 80 315
|
[7] |
Malinauskas M, Žukauskas A, Bičkauskaitė G, Gadonas R and Juodkazis S 2010 Opt. Express 18 10209
|
[8] |
Ni X, Anoop K, Bianco M, Amoruso S, Wang X, Li T, Hu M and Song Z 2013 Chin. Opt. Lett. 11 093201
|
[9] |
Cao X, Jahazi M, Immarigeon J P and Wallace W 2006 J. Mater. Proc. Technol. 171 188
|
[10] |
Giesen A, Hügel H, Voss A, Wittig K, Brauch U and Opower H 1994 Appl. Phys. B 58 365
|
[11] |
Ladran A, Ault E, Beach R, Campbell J, Erlandson A, Felker A, Freitas B, Meier W, Telford S and Ebbers C 2007 Lawrence Livermore National Laboratory Report UCRL-CONF, May 04-09, 2008, CA, USA, p. 237006
|
[12] |
Giesen A and Speiser J 2007 IEEE J. Sel. Top. Quantum Electron. 13 598
|
[13] |
Schad S, Gottwald T, Kuhn V, Ackermann M, Bauer D, Scharun M and Killi A 2016 SPIE LASE, March 17, 2016, CA, USA, p. 972615
|
[14] |
Lewenstein M, Balcou P, Ivanov M Y, L'huillier A and Corkum P B 1994 Phys. Rev. A 49 2117
|
[15] |
Popmintchev T, Chen M C, Arpin P, Murnane M and Kapteyn H C 2010 Nat. Photon. 4 822
|
[16] |
Drescher M, Hentschel M, Kienberger R, Uiberacker M, Yakovlev V, Scrinzi A, Westerwalbesloh T, Kleineberg U, Heinzmann U and Krausz F 2002 Nature 419 803
|
[17] |
Xiao W, Lin S, Taguchi A K and Woodbury N W 1994 Biochemistry 33 8313
|
[18] |
Houard A, Jukna V, Point G, André Y B, Klingebiel S, Schultze M, Michel K, Metzger T and Mysyrowicz A 2016 Opt. Express 24 7437
|
[19] |
Chen J, Suda A, Takahashi E J, Nurhuda M and Midorikawa K 2008 Opt. Lett. 33 2992
|
[20] |
Schmidt B E, Béjot P, Giguére M, Shiner A D, Trallero-Herrero C, Bisson É, Kasparian J, Wolf J P, Villeneuve D M and Kieffer J C 2010 Appl. Phys. Lett. 92 121109
|
[21] |
Chen X, Jullien A, Malvache A, Canova L, Borot A, Trisorio A, Durfee C G and Lopez-Martens R 2009 Opt. Lett. 34 1588
|
[22] |
Huang Z Y, Wang D, Dai Y, Li Y, Guo X Y, Li W K, Chen Y, Lu J, Liu Z and Zhao R 2016 Opt. Express 24 9280
|
[23] |
Bohman S, Suda A, Kanai T, Yamaguchi S and Midorikawa K 2010 Opt. Lett. 35 1887
|
[24] |
Krylov A, Chernysheva M A, Chernykh D S, Kryukov P G and Dianov E M 2013 Laser Physics 23 075107
|
[25] |
Huang Z Y, Wang D, Leng Y X and Dai Y 2014 Chin. Phys. B 23 124210
|
[26] |
Eimerl D, Davis L, Velsko S, Graham E and Zalkin A 1987 J. Appl. Phys. 62 1968
|
[27] |
Zelmon D E, Small D L and Page R 1998 Appl. Opt. 37 4933
|
[28] |
Wang C and Leng Y X 2013 Chin. Phys. Lett. 30 044208
|
[29] |
Courtois C, Couairon A, Cros B, Marques J and Matthieussent G 2001 Phys. Plasmas 8 3445
|
[30] |
Wang D, Leng Y X and Huang Z Y 2014 J. Opt. Soc. Am. B 31 1248
|
[31] |
Perelomov A, Popov V and Terent'ev M 1966 Sov. Phys. JETP 23 924
|
[32] |
Huang Z Y, Wang D, Leng Y X and Dai Y 2015 Opt. Express 23 17711
|
[33] |
Pinault S C and Potasek M 1985 J. Opt. Soc. Am. B 2 1318
|
[34] |
Fedotov A, Serebryannikov E and Zheltikov A 2007 Phys. Rev. A 76 053811
|
[35] |
Saleh M F, Chang W, Hölzer P, Nazarkin A, Travers J C, Joly N Y, Russell P S J and Biancalana F 2011 Phys. Rev. Lett. 107 203902
|
[36] |
Nubling R K and Harrington J A 1998 Opt. Eng. 37 2454
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|