Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(6): 067802    DOI: 10.1088/1674-1056/23/6/067802
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

An effective surface-enhanced Raman scattering template based on gold nanoparticle/silicon nanowire arrays

Wang Ming-Li (王明利)a, Zhang Chang-Xing (张常兴)b, Wu Zheng-Long (吴正龙)c, Jing Xi-Li (井西利)a, Xu Hai-Jun (许海军)b
a College of Sciences, Yanshan University, Qinhuangdao 066004, China;
b School of Science and State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China;
c Analytical and Testing Center, Beijing Normal University, Beijing 100875, China
Abstract  A large-scale Si nanowire array (SiNWA) is fabricated with gold (Au) nanoparticles by simple metal-assisted chemical etching and metal reduction processes. The three-dimensional nanostructured Au/SiNWA is evaluated as an active substrate for surface-enhanced Raman scattering (SERS). The results show that the detection limit for rhodamine 6G is as low as 10-7 M, and the Raman enhancement factor is as large as 105 with a relative standard deviation of less than 25%. After the calibration of the Raman peak intensities of rhodamine 6G and thiram, organic molecules could be quantitatively detected. These results indicate that Au/SiNWA is a promising SERS-active substrate for the detection of biomolecules present in low concentrations. Our findings are an important advance in SERS substrates to allow fast and quantitative detection of trace organic contaminants.
Keywords:  surface-enhanced Raman scattering      nanowire array      quantitative detection  
Received:  24 November 2013      Revised:  08 February 2014      Accepted manuscript online: 
PACS:  78.30.-j (Infrared and Raman spectra)  
  74.25.nd (Raman and optical spectroscopy)  
  61.46.-w (Structure of nanoscale materials)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11104008), the Beijing Natural Science Foundation, China (Grant No. 4142040), the Doctoral Fund of the Ministry of Education of China (Grant No. 20090010120014), the Beijing Higher Education Young Elite Teacher Project, and the Technology Research and Development Program of Qinhuangdao City, China (Grant Nos. 201001A034 and 2012021A056).
Corresponding Authors:  Jing Xi-Li, Xu Hai-Jun     E-mail:  jingxili@ysu.edu.cn;hjxu@mail.buct.edu.cn

Cite this article: 

Wang Ming-Li (王明利), Zhang Chang-Xing (张常兴), Wu Zheng-Long (吴正龙), Jing Xi-Li (井西利), Xu Hai-Jun (许海军) An effective surface-enhanced Raman scattering template based on gold nanoparticle/silicon nanowire arrays 2014 Chin. Phys. B 23 067802

[1] Bell S E J and Sirimuthu N M S 2006 J. Am. Chem. Soc. 128 15580
[2] Xie W, Walkenfort B and Schlucker S 2013 J. Am. Chem. Soc. 135 1657
[3] Nie S M and Emory S R 1997 Science 275 1102
[4] Sackmann M and Materny A 2006 J. Raman Spectrosc. 37 305
[5] Moskovits M 1985 Rev. Mod. Phys. 57 783
[6] Zheng J, Jiao A L, Yang R H, Li H M, Li J S, Shi M L, Ma C, Jiang Y, Deng L and Tan W H 2012 J. Am. Chem. Soc. 134 19957
[7] Camden J A, Dieringer J A, Wang Y, Masiello D J, Marks L D, Schatz G C and Van D R P 2008 J. Am. Chem. Soc. 130 12616
[8] Guo H Y, Jiang D, L H B, Xu S P and Xu W Q 2013 J. Phys. Chem. C 117 564
[9] Barhoumi A, Zhang D, Tam F and Halas N J 2008 J. Am. Chem. Soc. 130 5523
[10] Qian X M, Li J and Nie S M 2009 J. Am. Chem. Soc. 131 7540
[11] Tiwari V S, Tovmachenko O, Darbha G K, Hardy W, Singh J P and Ray P C 2007 Chem. Phys. Lett. 446 77
[12] Hutchison J A, Centeno S P, Odaka H, Fukumura H, Hofkens J and Hiroshi U I 2009 Nano Lett. 9 995
[13] Campion A and Kambhampati P 1998 Chem. Soc. Rev. 27 241
[14] Esenturk E N and Walker A R H 2009 J. Raman Spectrosc. 40 86
[15] Lin X M, Cui Y, Xu Y H, Ren B and Tian Z Q 2009 Anal. Bioanal. Chem. 394 1729
[16] Grzelczak M, Perez J J, Mulvaney P and Liz M L M 2008 Chem. Soc. Rev. 37 1783
[17] Natan M J 2006 Faraday Discuss. 132 321
[18] Samuel S R D, Singh A K, Dulal S, Yu H T and Paresh C R 2009 J. Am. Chem. Soc. 131 13806
[19] Shi X Z, Shen C M, Wang D K, Li C, Tian Y, Xu Z C, Wang C M and Gao H J 2011 Chin. Phys. B 20 076103
[20] Liu Y J, Chu H Y and Zhao Y P 2010 J. Phys. Chem. C 114 8176
[21] Hsiao W H, Chen H Y, Yang Y C, Chen Y L, Lee C Y and Chiu H T 2011 ACS Appl. Mate. Interfaces 3 3280
[22] Deng C Y, Zhang G L, Zou B, Shi H L, Liang Y J, Li Y C, Fu J X and Wang W Z 2013 Chin. Phys. B 22 106102
[23] Jena B K and Raj C R 2008 Chem. Mater. 20 3546
[24] Li J F, Huang Y F, Ding Y, Yang Z L, Zhou X S, Fan F R, Zhang W, Zhou Z Y, Wu D Y, Ren B, Wang Z L and Tian Z Q 2010 Nature 464 392
[25] Liu R, Liu J F, Zhou X X, Sun M T and Jiang G B 2011 Anal. Chem. 83 9131
[26] Lerose D, Bechelany M, Philippe L, Michler J and Christiansen S 2010 J. Cryst. Growth 312 2887
[27] Pan H, Lim S, Poh C, Sun H, Wu X, Feng Y and Lin J 2005 Nanotechnology 16 417
[28] Yuan F W and Tuan H Y 2010 Cryst. Growth Des. 10 4741
[29] Shao M W, Ma D D and Lee S T 2010 Eur. J. Inorg. Chem. 2010 4264
[30] Chun J Y and Lee J W 2010 Eur. J. Inorg. Chem. 27 4251
[31] Yang Y H, Wu S J, Chiu H S, Lin P I and Chen Y T 2004 J. Phys. Chem. B 108 846
[32] Li X and Bohn P W 2000 Appl. Phys. Lett. 77 2572
[33] Zhang M L, Peng K Q, Fan X, Jie J S, Zhang R Q, Lee S T and Wong N B 2008 J. Phys. Chem. C 112 4444
[34] Saito Y, Wang J J, Smith D A and Batchelder D N 2002 Langmuir. 18 2959
[35] Huo S J, Xue X K, Li Q X, Xu S F and Cai W B 2006 J. Phys. Chem. B 110 25721
[36] Fang C, Agarwal A, Widjaja E, Garland M V, Wong S M, Linn L, Khalid N M, Salim S M and Balasubramanian N 2009 Chem. Mater. 21 3542
[37] Hildebrandt P and Stockburger M 1984 J. Phys. Chem. 88 5935
[38] Wang X T, Shi W S, She G W, Mu L X and Lee S T 2010 Appl. Phys. Lett. 96 053104
[39] Shen J H, Zhu Y H, Yang X L, Zong J and Li C Z 2013 Langmuir. 29 690
[40] Hong J W, Lee S U, Lee Y W and Han S W 2012 J. Am. Chem. Soc. 134 4565
[41] Li L, Hutter T, Finnemore A S, Huang F M, Baumberg J J, Stephen R E, Steiner U and Mahajan S 2012 Nano Lett. 12 4242
[42] Vidal F J G and Pendry J B 1996 Phys. Rev. Lett. 77 1163
[43] Xu H X, Aizpurua J, Kall M and Apell P 2000 Phys. Rev. E 62 4318
[44] Fang J X, Yi Y, Ding B J and Song X P 2008 Appl. Phys. Lett. 92 131115
[45] Qiu T, Zhou Y J, Li J Q, Zhang W J, Lang X Z, Cui T J and Chu P K 2009 J. Phys. D: Appl. Phys. 42 175403
[46] Qin L D, Zou S L, Xue C, Atkinson A, Schatz G C and Mirkin C A 2006 Proc. Natl. Acad. Sci. USA 103 13300
[47] Choi C J, Xu Z D, Wu H Y, Liu G L and Cunningham B T 2010 Nanotechnology 21 415301
[48] Zhang B H, Wang H S, Lu L H, Ai K L, Zhang G and Cheng X L 2008 Adv. Funct. Mater. 18 2348
[49] Sánchez Corte's S, Domingo C, García Ramos J V and Aznárez J A 2001 Langmuir. 17 1157
[1] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[2] Growth of high-crystallinity uniform GaAs nanowire arrays by molecular beam epitaxy
Yu-Bin Kang(亢玉彬), Feng-Yuan Lin(林逢源), Ke-Xue Li(李科学), Ji-Long Tang(唐吉龙), Xiao-Bing Hou(侯效兵), Deng-Kui Wang(王登魁), Xuan Fang(方铉), Dan Fang(房丹), Xin-Wei Wang(王新伟), and Zhi-Peng Wei(魏志鹏). Chin. Phys. B, 2021, 30(7): 078102.
[3] Mechanically tunable broadband terahertz modulator based on high-aligned Ni nanowire arrays
Wenfeng Xiang(相文峰), Xuan Liu(刘旋), Xiaowei Huang(黄晓炜), Qingli Zhou(周庆莉), Haizhong Guo(郭海中), and Songqing Zhao(赵嵩卿). Chin. Phys. B, 2021, 30(2): 026201.
[4] Fractal microstructure of Ag film via plasma discharge as SERS substrates
Xue-Fen Kan(阚雪芬), Cheng Yin(殷澄), Zhuang-Qi Cao(曹庄琪), Wei Su(苏巍), Ming-Lei Shan(单鸣雷), and Xian-Ping Wang(王贤平). Chin. Phys. B, 2021, 30(12): 125201.
[5] Selective synthesis of three-dimensional ZnO@Ag/SiO2@Ag nanorod arrays as surface-enhanced Raman scattering substrates with tunable interior dielectric layer
Jia-Jia Mu(牟佳佳), Chang-Yi He(何畅意), Wei-Jie Sun(孙伟杰), Yue Guan(管越). Chin. Phys. B, 2019, 28(12): 124204.
[6] Highly sensitive and stable SERS probes of alternately deposited Ag and Au layers on 3D SiO2 nanogrids for detection of trace mercury ions
Yi Tian(田毅), Han-Fu Wang(王汉夫), Lan-Qin Yan(闫兰琴), Xian-Feng Zhang(张先锋), Attia Falak, Pei-Pei Chen(陈佩佩), Feng-Liang Dong(董凤良), Lian-Feng Sun(孙连峰), Wei-Guo Chu(禇卫国). Chin. Phys. B, 2018, 27(7): 077406.
[7] Quantitative and sensitive detection of prohibited fish drugs by surface-enhanced Raman scattering
Shi-Chao Lin(林世超), Xin Zhang(张鑫), Wei-Chen Zhao(赵伟臣), Zhao-Yang Chen(陈朝阳), Pan Du(杜攀), Yong-Mei Zhao(赵永梅), Zheng-Long Wu(吴正龙), Hai-Jun Xu(许海军). Chin. Phys. B, 2018, 27(2): 028707.
[8] A general method for large-scale fabrication of Cu nanoislands/dragonfly wing SERS flexible substrates
Yuhong Wang(王玉红), Mingli Wang(王明利), Lin Shen(沈琳), Yanying Zhu(朱艳英), Xin Sun(孙鑫), Guochao Shi(史国超), Xiaona Xu(许晓娜), Ruifeng Li(李瑞峰), Wanli Ma(马万里). Chin. Phys. B, 2018, 27(1): 017801.
[9] Controllable optical activity of non-spherical Ag and Co SERS substrate with different magnetic field
Chun-Zhen Fan(范春珍), Shuang-Mei Zhu(朱双美), Hao-Yi Xin(辛昊毅). Chin. Phys. B, 2017, 26(2): 023301.
[10] Enormous enhancement of electric field in active gold nanoshells
Jiang Shu-Min (蒋书敏), Wu Da-Jian (吴大建), Wu Xue-Wei (吴雪炜), Liu Xiao-Jun (刘晓峻). Chin. Phys. B, 2014, 23(4): 047807.
[11] Perforated nanocap array: Facile fabrication process and efficient surface enhanced Raman scattering with fluorescence suppression
Wang Jun (王军), Huang Li-Qing (黄丽清), Tong Hui-Min (童慧敏), Zhai Li-Peng (翟立鹏), Yuan Lin (袁林), Zhao Li-Hua (赵丽华), Zhang Wei-Wei (张薇薇), Shan Dong-Zhi (单冬至), Hao Ai-Wen (郝爱文), Feng Xue-Hong (冯雪红). Chin. Phys. B, 2013, 22(4): 047301.
[12] Micromagnetic simulation on the dynamic susceptibility spectra of cobalt nanowires arrays: the effect of magnetostatic interaction
Chen Wen-Bing(陈文兵), Han Man-Gui(韩满贵), Zhou Hao(周浩), Ou Yu(欧雨), and Deng Long-Jiang(邓龙江). Chin. Phys. B, 2010, 19(8): 087502.
[13] Fabrication and optical properties of platinum nanowire arrays on anodic aluminium oxide templates
Gao Tie-Ren (高铁仁), Chen Zi-Yu (陈子瑜), Peng Yong (彭勇), Li Fa-Shen (李发伸). Chin. Phys. B, 2002, 11(12): 1307-1312.
No Suggested Reading articles found!