CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
An effective surface-enhanced Raman scattering template based on gold nanoparticle/silicon nanowire arrays |
Wang Ming-Li (王明利)a, Zhang Chang-Xing (张常兴)b, Wu Zheng-Long (吴正龙)c, Jing Xi-Li (井西利)a, Xu Hai-Jun (许海军)b |
a College of Sciences, Yanshan University, Qinhuangdao 066004, China; b School of Science and State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China; c Analytical and Testing Center, Beijing Normal University, Beijing 100875, China |
|
|
Abstract A large-scale Si nanowire array (SiNWA) is fabricated with gold (Au) nanoparticles by simple metal-assisted chemical etching and metal reduction processes. The three-dimensional nanostructured Au/SiNWA is evaluated as an active substrate for surface-enhanced Raman scattering (SERS). The results show that the detection limit for rhodamine 6G is as low as 10-7 M, and the Raman enhancement factor is as large as 105 with a relative standard deviation of less than 25%. After the calibration of the Raman peak intensities of rhodamine 6G and thiram, organic molecules could be quantitatively detected. These results indicate that Au/SiNWA is a promising SERS-active substrate for the detection of biomolecules present in low concentrations. Our findings are an important advance in SERS substrates to allow fast and quantitative detection of trace organic contaminants.
|
Received: 24 November 2013
Revised: 08 February 2014
Accepted manuscript online:
|
PACS:
|
78.30.-j
|
(Infrared and Raman spectra)
|
|
74.25.nd
|
(Raman and optical spectroscopy)
|
|
61.46.-w
|
(Structure of nanoscale materials)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11104008), the Beijing Natural Science Foundation, China (Grant No. 4142040), the Doctoral Fund of the Ministry of Education of China (Grant No. 20090010120014), the Beijing Higher Education Young Elite Teacher Project, and the Technology Research and Development Program of Qinhuangdao City, China (Grant Nos. 201001A034 and 2012021A056). |
Corresponding Authors:
Jing Xi-Li, Xu Hai-Jun
E-mail: jingxili@ysu.edu.cn;hjxu@mail.buct.edu.cn
|
Cite this article:
Wang Ming-Li (王明利), Zhang Chang-Xing (张常兴), Wu Zheng-Long (吴正龙), Jing Xi-Li (井西利), Xu Hai-Jun (许海军) An effective surface-enhanced Raman scattering template based on gold nanoparticle/silicon nanowire arrays 2014 Chin. Phys. B 23 067802
|
[1] |
Bell S E J and Sirimuthu N M S 2006 J. Am. Chem. Soc. 128 15580
|
[2] |
Xie W, Walkenfort B and Schlucker S 2013 J. Am. Chem. Soc. 135 1657
|
[3] |
Nie S M and Emory S R 1997 Science 275 1102
|
[4] |
Sackmann M and Materny A 2006 J. Raman Spectrosc. 37 305
|
[5] |
Moskovits M 1985 Rev. Mod. Phys. 57 783
|
[6] |
Zheng J, Jiao A L, Yang R H, Li H M, Li J S, Shi M L, Ma C, Jiang Y, Deng L and Tan W H 2012 J. Am. Chem. Soc. 134 19957
|
[7] |
Camden J A, Dieringer J A, Wang Y, Masiello D J, Marks L D, Schatz G C and Van D R P 2008 J. Am. Chem. Soc. 130 12616
|
[8] |
Guo H Y, Jiang D, L H B, Xu S P and Xu W Q 2013 J. Phys. Chem. C 117 564
|
[9] |
Barhoumi A, Zhang D, Tam F and Halas N J 2008 J. Am. Chem. Soc. 130 5523
|
[10] |
Qian X M, Li J and Nie S M 2009 J. Am. Chem. Soc. 131 7540
|
[11] |
Tiwari V S, Tovmachenko O, Darbha G K, Hardy W, Singh J P and Ray P C 2007 Chem. Phys. Lett. 446 77
|
[12] |
Hutchison J A, Centeno S P, Odaka H, Fukumura H, Hofkens J and Hiroshi U I 2009 Nano Lett. 9 995
|
[13] |
Campion A and Kambhampati P 1998 Chem. Soc. Rev. 27 241
|
[14] |
Esenturk E N and Walker A R H 2009 J. Raman Spectrosc. 40 86
|
[15] |
Lin X M, Cui Y, Xu Y H, Ren B and Tian Z Q 2009 Anal. Bioanal. Chem. 394 1729
|
[16] |
Grzelczak M, Perez J J, Mulvaney P and Liz M L M 2008 Chem. Soc. Rev. 37 1783
|
[17] |
Natan M J 2006 Faraday Discuss. 132 321
|
[18] |
Samuel S R D, Singh A K, Dulal S, Yu H T and Paresh C R 2009 J. Am. Chem. Soc. 131 13806
|
[19] |
Shi X Z, Shen C M, Wang D K, Li C, Tian Y, Xu Z C, Wang C M and Gao H J 2011 Chin. Phys. B 20 076103
|
[20] |
Liu Y J, Chu H Y and Zhao Y P 2010 J. Phys. Chem. C 114 8176
|
[21] |
Hsiao W H, Chen H Y, Yang Y C, Chen Y L, Lee C Y and Chiu H T 2011 ACS Appl. Mate. Interfaces 3 3280
|
[22] |
Deng C Y, Zhang G L, Zou B, Shi H L, Liang Y J, Li Y C, Fu J X and Wang W Z 2013 Chin. Phys. B 22 106102
|
[23] |
Jena B K and Raj C R 2008 Chem. Mater. 20 3546
|
[24] |
Li J F, Huang Y F, Ding Y, Yang Z L, Zhou X S, Fan F R, Zhang W, Zhou Z Y, Wu D Y, Ren B, Wang Z L and Tian Z Q 2010 Nature 464 392
|
[25] |
Liu R, Liu J F, Zhou X X, Sun M T and Jiang G B 2011 Anal. Chem. 83 9131
|
[26] |
Lerose D, Bechelany M, Philippe L, Michler J and Christiansen S 2010 J. Cryst. Growth 312 2887
|
[27] |
Pan H, Lim S, Poh C, Sun H, Wu X, Feng Y and Lin J 2005 Nanotechnology 16 417
|
[28] |
Yuan F W and Tuan H Y 2010 Cryst. Growth Des. 10 4741
|
[29] |
Shao M W, Ma D D and Lee S T 2010 Eur. J. Inorg. Chem. 2010 4264
|
[30] |
Chun J Y and Lee J W 2010 Eur. J. Inorg. Chem. 27 4251
|
[31] |
Yang Y H, Wu S J, Chiu H S, Lin P I and Chen Y T 2004 J. Phys. Chem. B 108 846
|
[32] |
Li X and Bohn P W 2000 Appl. Phys. Lett. 77 2572
|
[33] |
Zhang M L, Peng K Q, Fan X, Jie J S, Zhang R Q, Lee S T and Wong N B 2008 J. Phys. Chem. C 112 4444
|
[34] |
Saito Y, Wang J J, Smith D A and Batchelder D N 2002 Langmuir. 18 2959
|
[35] |
Huo S J, Xue X K, Li Q X, Xu S F and Cai W B 2006 J. Phys. Chem. B 110 25721
|
[36] |
Fang C, Agarwal A, Widjaja E, Garland M V, Wong S M, Linn L, Khalid N M, Salim S M and Balasubramanian N 2009 Chem. Mater. 21 3542
|
[37] |
Hildebrandt P and Stockburger M 1984 J. Phys. Chem. 88 5935
|
[38] |
Wang X T, Shi W S, She G W, Mu L X and Lee S T 2010 Appl. Phys. Lett. 96 053104
|
[39] |
Shen J H, Zhu Y H, Yang X L, Zong J and Li C Z 2013 Langmuir. 29 690
|
[40] |
Hong J W, Lee S U, Lee Y W and Han S W 2012 J. Am. Chem. Soc. 134 4565
|
[41] |
Li L, Hutter T, Finnemore A S, Huang F M, Baumberg J J, Stephen R E, Steiner U and Mahajan S 2012 Nano Lett. 12 4242
|
[42] |
Vidal F J G and Pendry J B 1996 Phys. Rev. Lett. 77 1163
|
[43] |
Xu H X, Aizpurua J, Kall M and Apell P 2000 Phys. Rev. E 62 4318
|
[44] |
Fang J X, Yi Y, Ding B J and Song X P 2008 Appl. Phys. Lett. 92 131115
|
[45] |
Qiu T, Zhou Y J, Li J Q, Zhang W J, Lang X Z, Cui T J and Chu P K 2009 J. Phys. D: Appl. Phys. 42 175403
|
[46] |
Qin L D, Zou S L, Xue C, Atkinson A, Schatz G C and Mirkin C A 2006 Proc. Natl. Acad. Sci. USA 103 13300
|
[47] |
Choi C J, Xu Z D, Wu H Y, Liu G L and Cunningham B T 2010 Nanotechnology 21 415301
|
[48] |
Zhang B H, Wang H S, Lu L H, Ai K L, Zhang G and Cheng X L 2008 Adv. Funct. Mater. 18 2348
|
[49] |
Sánchez Corte's S, Domingo C, García Ramos J V and Aznárez J A 2001 Langmuir. 17 1157
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|