ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Flexible pulses from carbon nanotubes mode-locked fiber laser |
Ling-Zhen Yang(杨玲珍)1,2, Yi Yang(杨义)1, Juan-Fen Wang(王娟芬)1 |
1. College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, China;
2. Laboratory of Advanced Transducers and Intelligent Control System, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China |
|
|
Abstract We demonstrate a flexible erbium-doped pulsed fiber laser which achieves the wavelength and pulse width tuning by adjusting an intracavity filter. The intracavity filter is flexible to achieve any of the different wavelengths and bandwidths in the tuning range. The wavelength and width of pulse can be tuned in a range of ~20 nm and from ~0.8 ps to 87 ps, respectively. The flexible pulsed fiber laser can be accurately controlled, which is insensitive to environmental disturbance.
|
Received: 16 May 2016
Revised: 06 August 2016
Accepted manuscript online:
|
PACS:
|
42.55.Wd
|
(Fiber lasers)
|
|
42.60.Fc
|
(Modulation, tuning, and mode locking)
|
|
42.65.Re
|
(Ultrafast processes; optical pulse generation and pulse compression)
|
|
88.30.rh
|
(Carbon nanotubes)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61575137) and the Program on Social Development by Department of Science and Technology of Shanxi Province, China (Grant No. 20140313023-3). |
Corresponding Authors:
Ling-Zhen Yang
E-mail: office-science@tyut.edu.cn
|
Cite this article:
Ling-Zhen Yang(杨玲珍), Yi Yang(杨义), Juan-Fen Wang(王娟芬) Flexible pulses from carbon nanotubes mode-locked fiber laser 2016 Chin. Phys. B 25 124203
|
[1] |
Tamura K, Ippen E P, Haus H A and Nelson L E 1993 Opt. Lett. 18 1080
|
[2] |
Sun Z P, Popa D, Hasan T, Torrisi F, Wang F Q, Kelleher E J R, Travers J C, Nicolosi V and Ferrari A C 2010 Nano Res. 3 653
|
[3] |
Cui Y D, Liu X M and Zeng C 2014 Laser Phys. Lett. 11 055106
|
[4] |
Chen H, Chen S P, Jiang Z F and Hou J 2015 Opt. Express 23 1308
|
[5] |
Holman K W, Jones D J, Hudson D D and Ye J 2004 Opt. Lett. 29 1554
|
[6] |
Gottschall T, Meyer T, Schmitt M, Popp J, Limpert J and T unnermann A 2015 Opt. Express 23 23968
|
[7] |
Feng L H, Zuo L and Yang A Y 2013 Chin. Phys. B 22 024208
|
[8] |
Bai D B, Li W X, Yang K W, Shen X L, Chen X L and Zeng H P 2014 Chin. Phys. B 23 104208
|
[9] |
Zhao W, Zhang W, Ma H Q, Liu C, Chen G F and Lu K Q 2007 Chin. Phys. 16 1038
|
[10] |
Luo B W, Dong J J, Yu Y, Yang T and Zhang X L 2013 Chin. Phys. B 22 023201
|
[11] |
Keller U and Tropper A C 2006 Phys. Rep. 429 67
|
[12] |
Fu K, Xu Z W, Li H Q, Peng J G, Dai N L and Li J Y 2015 Acta Phys. Sin. 64 194205 (in Chinese)
|
[13] |
Cui Y D and Liu X M 2013 Opt. Express 21 18969
|
[14] |
Wang J L, Wang X L, He B R, Zhu J F, Wei Z Y and Wang Y G 2015 Chin. Phys. B 24 097601
|
[15] |
Zhang X and Song Y R 2014 Chin. Phys. B 23 064204
|
[16] |
Sun Z P, Hasan T, Wang F Q, Rozhin A G, White I H and Ferrari A C 2010 Nano Res. 3 404
|
[17] |
Ma D, Cai Y, Zhou C, Zong W J, Chen L L and Zhang Z G 2010 Opt. Lett. 35 2858
|
[18] |
Wang J L, Wang X L, He B R, Wang Y G, Zhu J F and Wei Z 2015 Chin. Phys. Lett. 32 114202
|
[19] |
Liu X M, Han D D, Sun Z P, Zeng C, Lu H, Mao D, Cui Y D and Wang F Q 2013 Sci. Rep. 3 2718
|
[20] |
Liu X M, Cui Y D, Han D D, Yao X K and Sun Z P 2015 Sci. Rep. 5 9101
|
[21] |
Wang Y B, Qi X H, Shen Y, Yao Y L, Xu Z J and Pan Y Z 2015 Acta Phys. Sin. 64 204205 (in Chinese)
|
[22] |
Zhao C J, Zou Y H, Chen Y, Wang Z T, Lu S B, Zhang H, Wen S C and Tang D Y 2012 Opt. Express 20 27888
|
[23] |
Meng Y C, Salhi M, Niang A, Guesmi K, Semaan G and Sanchez F 2015 Opt. Lett. 40 1153
|
[24] |
Wang F, Rozhin A G, Scardaci V, Sun Z, Hennrich F, White I H, Milne W I and Ferrari A C 2008 Nat. Nanotechnol. 3 738
|
[25] |
Liu X M and Cui Y D 2015 Sci. Rep. 5 9399
|
[26] |
Han D D and Liu X M 2012 Opt. Express 20 27045
|
[27] |
Wang L R, Liu X M, Gong Y K, Mao D and Duan L N 2011 Opt. Express 19 7616
|
[28] |
Duan L N, Su Y L, Wang Y G, Li L, Wang X and Wang Y S 2016 Chin. Phys. B 25 024206
|
[29] |
Liu X M 2011 Phys. Rev. A 84 023835
|
[30] |
Liu X M 2010 Phys. Rev. A 81 023811
|
[31] |
Mao D, Liu X, Wang L R, Hu X H and Lu H 2011 Laser Phys. Lett. 8 134
|
[32] |
Liu X M 2010 Phys. Rev. A 81 053819
|
[33] |
Wang L R, Liu X M and Gong Y K 2010 Laser Phys. Lett. 7 63
|
[34] |
Zeng C, Liu X and Yun L 2013 Opt. Express 21 18937
|
[35] |
Liu X M, Yang H R, Cui Y D, Chen G W, Yang Y, Wu X Q, Yao X K, Han D D, Han X X, Zeng C, Guo J, Li W L, Cheng G and Tong L M 2016 Sci. Rep. 6 26024
|
[36] |
Yun L and Liu X M 2012 IEEE Photon. J. 4 512
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|