ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Dynamics of two arbitrary qubits strongly coupled to a quantum oscillator |
Kun Dong(董锟) |
School of Sciences, Beijing University of Posts and Telecommunications, Beijing 100876, China |
|
|
Abstract Using adiabatic approximation, a two arbitrary qubits Rabi model has been studied in ultra-strong coupling. The analytical expressions of the eigenvalues and the eigenvalues are obtained. They are in accordance with the numerical determined results. The dynamical behavior of the system and the evolution of entanglement have also been discussed. The collapse and revival phenomena has garnered particular attention. The influence of inconsistent coupling strength on them is studied. These results will be applied in quantum information processing.
|
Received: 21 July 2016
Revised: 30 August 2016
Accepted manuscript online:
|
PACS:
|
42.50.Md
|
(Optical transient phenomena: quantum beats, photon echo, free-induction decay, dephasings and revivals, optical nutation, and self-induced transparency)
|
|
03.65.Ud
|
(Entanglement and quantum nonlocality)
|
|
42.50.Pq
|
(Cavity quantum electrodynamics; micromasers)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10875018). |
Corresponding Authors:
Kun Dong
E-mail: dklovemy@163.com
|
Cite this article:
Kun Dong(董锟) Dynamics of two arbitrary qubits strongly coupled to a quantum oscillator 2016 Chin. Phys. B 25 124202
|
[1] |
Rabi I I 1936 Phys. Rev. 49 324
|
[2] |
Rabi I I 1937 Phys. Rev. 57 652
|
[3] |
You J Q and Nori F 2005 Phys. Today 58 42
|
[4] |
You J Q and Nori F 2011 Nature 474 589
|
[5] |
Nation P D, Johansson J R, Blencowe M P and Nori F 2012 Rev. Mod. Phys. 84 1
|
[6] |
Xiang Z L, Ashhab S, You J Q and Nori F 2013 Rev. Mod. Phys. 85 623
|
[7] |
Blais A, Huang R S, Wallraff A and Scheolkopf R 2004 Phys. Rev. A 69 062320
|
[8] |
Chiorescu I, Bertet P, Semba K, Nakamura K, Harmans C J P M and Mooij J E 2004 Nature 431 159
|
[9] |
Wallraff A, Schuster D I, Blais A, Frunzio L and Huang R S 2004 Nature 431 162
|
[10] |
Johansson J, Saito S, Meno T, Nakano H, Ueda M, Semba K and Rankayanaqi H 2006 Phys. Rev. Lett. 96 127006
|
[11] |
Leek P J, Filipp S, Maurer P, Baur M, Bianchetti R, Fink J M, Goppl M, Steffen L and Wallraff A 2009 Phys. Rev. B 79 180511
|
[12] |
Hu X, Liu D Q and Pan X Y 2011 Chin. Phys. B 20 0117801
|
[13] |
Wang Z H and Zhou D L 2013 Chin. Phys. B 22 0114205
|
[14] |
Braak D 2011 Phys. Rev. Lett. 107 100401
|
[15] |
Zhong H P, Xie Q T, Batchelor M T and Lee C H 2013 J. Phys. A:Math.Theor. 46 415302
|
[16] |
Chen Q H, Wang C, He S, Liu T and Wang K L 2012 Phys. Rev. A 86 023822
|
[17] |
Travěnec I 2012 Phys. Rev. A 85 043805
|
[18] |
Jaynes E T and Cummings F W 1963 Proc. IEEE 51 89
|
[19] |
Rajagopal A K, Jensen K L and Cummings F W 1999 Phys. Rev. Lett. A 259 285
|
[20] |
Irish E K, Gea-Banacloche J, Martin I and Swchab K C 2005 Phys. Rev. A 72 195410
|
[21] |
Agarwal S, Hashemi Rafsanjani S M and Eberly J H 2012 Phys. Rev. A 85 043815
|
[22] |
Irish E K and Banacloche J G 2014 Phys. Rev. B 89 085421
|
[23] |
Ma Y, Dong K and Tian G H 2014 Chin. Phys. B 23 094204
|
[24] |
Son W, Kim M S, Lee J and Ahn D 2002 J. Mod. Opt. 49 1739
|
[25] |
Kraus B and Cirac J I 2004 Phys. Rev. Lett. 92 013602
|
[26] |
Paternostro M, Son W and Kim M S 2004 Phys. Rev. Lett. 92 197901
|
[27] |
Paternostro M, Son W, Kim M S, Falci G and Palm G M 2004 Phys. Rev. A 70 022320
|
[28] |
Lee J, Paternostro M, Kim M S and Bose S 2006 Phys. Rev. Lett. 96 080501
|
[29] |
Zhou L and Yang G 2006 J. Phys. B:At. Mol. Opt. Phys. 39 5143
|
[30] |
Rendell R W and Rajagopal A K 2003 Phys. Rev. A 67 062110
|
[31] |
Yönac M and Eberly J H 2010 Phys. Rev. A 82 022321
|
[32] |
Zhu W T, Ren Q B, Duan L W and Chen Q H 2016 Chin. Phys. Lett. 33 050302
|
[33] |
Fan K M and Zhang G F 2013 Acta Phys. Sin. 62 130301 (in Chinese)
|
[34] |
Hu Y H, Tan Y G and Liu Q 2013 Acta Phys. Sin. 62 074202 (in Chinese)
|
[35] |
Altintas F and Eryigit R 2012 Phys. Lett. A 376 1791
|
[36] |
Corcoles A D 2013 Phys. Rev. A 87 030301
|
[37] |
Barends R, Kelly J, Megrant A, Sank D, Jeffrey E, White T C, Mutus I, Fowler A G, Campbell B, Chen Y, Chen, Z, Chiaro B, Dunsworth A, Neill C, Omalley P, Roushan P, Vainsencher A, Wenner J, Korotkov A N, Cleland A N and Martinis J M 2014 Nature 508 500
|
[38] |
Chilingaryan S A and Rodriguez-Lara B M 2013 J. Phys. A:Math. Theor. 46 335301
|
[39] |
Rodriguez-Lara B M 2014 J. Phys. A:Math. Theor. 47 135306
|
[40] |
Peng J, Ren Z Z, Braak D and Guo G J 2014 J. Phys. A:Math. Theor. 47 265303
|
[41] |
Wang H, He S, Duan L W and Chen Q H 2014 Europhys. Lett. 106 54001
|
[42] |
Mao L J, Huai S N and Zhang Y B 2014 arXiv:1403.5893
|
[43] |
Zhang Y Y and Chen Q H 2015 Phys. Rev. A 91 013814
|
[44] |
Duan L, He S and Chen Q H 2015 Ann. Phys. 355 121
|
[45] |
Rodríguez-Lara B M, Chilingaryan S A and Moya-Cessa H M 2014 J. Phys. A:Math. Theor. 47 13506
|
[46] |
Wootters W K 1998 Phys. Rev. Lett. 80 080501
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|