Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(12): 124202    DOI: 10.1088/1674-1056/25/12/104202
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Dynamics of two arbitrary qubits strongly coupled to a quantum oscillator

Kun Dong(董锟)
School of Sciences, Beijing University of Posts and Telecommunications, Beijing 100876, China
Abstract  

Using adiabatic approximation, a two arbitrary qubits Rabi model has been studied in ultra-strong coupling. The analytical expressions of the eigenvalues and the eigenvalues are obtained. They are in accordance with the numerical determined results. The dynamical behavior of the system and the evolution of entanglement have also been discussed. The collapse and revival phenomena has garnered particular attention. The influence of inconsistent coupling strength on them is studied. These results will be applied in quantum information processing.

Keywords:  Rabi model      ultra-strong coupling      adiabatic approximation  
Received:  21 July 2016      Revised:  30 August 2016      Accepted manuscript online: 
PACS:  42.50.Md (Optical transient phenomena: quantum beats, photon echo, free-induction decay, dephasings and revivals, optical nutation, and self-induced transparency)  
  03.65.Ud (Entanglement and quantum nonlocality)  
  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 10875018).

Corresponding Authors:  Kun Dong     E-mail:  dklovemy@163.com

Cite this article: 

Kun Dong(董锟) Dynamics of two arbitrary qubits strongly coupled to a quantum oscillator 2016 Chin. Phys. B 25 124202

[1] Rabi I I 1936 Phys. Rev. 49 324
[2] Rabi I I 1937 Phys. Rev. 57 652
[3] You J Q and Nori F 2005 Phys. Today 58 42
[4] You J Q and Nori F 2011 Nature 474 589
[5] Nation P D, Johansson J R, Blencowe M P and Nori F 2012 Rev. Mod. Phys. 84 1
[6] Xiang Z L, Ashhab S, You J Q and Nori F 2013 Rev. Mod. Phys. 85 623
[7] Blais A, Huang R S, Wallraff A and Scheolkopf R 2004 Phys. Rev. A 69 062320
[8] Chiorescu I, Bertet P, Semba K, Nakamura K, Harmans C J P M and Mooij J E 2004 Nature 431 159
[9] Wallraff A, Schuster D I, Blais A, Frunzio L and Huang R S 2004 Nature 431 162
[10] Johansson J, Saito S, Meno T, Nakano H, Ueda M, Semba K and Rankayanaqi H 2006 Phys. Rev. Lett. 96 127006
[11] Leek P J, Filipp S, Maurer P, Baur M, Bianchetti R, Fink J M, Goppl M, Steffen L and Wallraff A 2009 Phys. Rev. B 79 180511
[12] Hu X, Liu D Q and Pan X Y 2011 Chin. Phys. B 20 0117801
[13] Wang Z H and Zhou D L 2013 Chin. Phys. B 22 0114205
[14] Braak D 2011 Phys. Rev. Lett. 107 100401
[15] Zhong H P, Xie Q T, Batchelor M T and Lee C H 2013 J. Phys. A:Math.Theor. 46 415302
[16] Chen Q H, Wang C, He S, Liu T and Wang K L 2012 Phys. Rev. A 86 023822
[17] Travěnec I 2012 Phys. Rev. A 85 043805
[18] Jaynes E T and Cummings F W 1963 Proc. IEEE 51 89
[19] Rajagopal A K, Jensen K L and Cummings F W 1999 Phys. Rev. Lett. A 259 285
[20] Irish E K, Gea-Banacloche J, Martin I and Swchab K C 2005 Phys. Rev. A 72 195410
[21] Agarwal S, Hashemi Rafsanjani S M and Eberly J H 2012 Phys. Rev. A 85 043815
[22] Irish E K and Banacloche J G 2014 Phys. Rev. B 89 085421
[23] Ma Y, Dong K and Tian G H 2014 Chin. Phys. B 23 094204
[24] Son W, Kim M S, Lee J and Ahn D 2002 J. Mod. Opt. 49 1739
[25] Kraus B and Cirac J I 2004 Phys. Rev. Lett. 92 013602
[26] Paternostro M, Son W and Kim M S 2004 Phys. Rev. Lett. 92 197901
[27] Paternostro M, Son W, Kim M S, Falci G and Palm G M 2004 Phys. Rev. A 70 022320
[28] Lee J, Paternostro M, Kim M S and Bose S 2006 Phys. Rev. Lett. 96 080501
[29] Zhou L and Yang G 2006 J. Phys. B:At. Mol. Opt. Phys. 39 5143
[30] Rendell R W and Rajagopal A K 2003 Phys. Rev. A 67 062110
[31] Yönac M and Eberly J H 2010 Phys. Rev. A 82 022321
[32] Zhu W T, Ren Q B, Duan L W and Chen Q H 2016 Chin. Phys. Lett. 33 050302
[33] Fan K M and Zhang G F 2013 Acta Phys. Sin. 62 130301 (in Chinese)
[34] Hu Y H, Tan Y G and Liu Q 2013 Acta Phys. Sin. 62 074202 (in Chinese)
[35] Altintas F and Eryigit R 2012 Phys. Lett. A 376 1791
[36] Corcoles A D 2013 Phys. Rev. A 87 030301
[37] Barends R, Kelly J, Megrant A, Sank D, Jeffrey E, White T C, Mutus I, Fowler A G, Campbell B, Chen Y, Chen, Z, Chiaro B, Dunsworth A, Neill C, Omalley P, Roushan P, Vainsencher A, Wenner J, Korotkov A N, Cleland A N and Martinis J M 2014 Nature 508 500
[38] Chilingaryan S A and Rodriguez-Lara B M 2013 J. Phys. A:Math. Theor. 46 335301
[39] Rodriguez-Lara B M 2014 J. Phys. A:Math. Theor. 47 135306
[40] Peng J, Ren Z Z, Braak D and Guo G J 2014 J. Phys. A:Math. Theor. 47 265303
[41] Wang H, He S, Duan L W and Chen Q H 2014 Europhys. Lett. 106 54001
[42] Mao L J, Huai S N and Zhang Y B 2014 arXiv:1403.5893
[43] Zhang Y Y and Chen Q H 2015 Phys. Rev. A 91 013814
[44] Duan L, He S and Chen Q H 2015 Ann. Phys. 355 121
[45] Rodríguez-Lara B M, Chilingaryan S A and Moya-Cessa H M 2014 J. Phys. A:Math. Theor. 47 13506
[46] Wootters W K 1998 Phys. Rev. Lett. 80 080501
[1] Hidden symmetry operators for asymmetric generalized quantum Rabi models
Xilin Lu, Zi-Min Li, Vladimir V Mangazeev, and Murray T Batchelor. Chin. Phys. B, 2022, 31(1): 014210.
[2] Quantum exceptional points of non-Hermitian Hamiltonian and Liouvillian in dissipative quantum Rabi model
Xianfeng Ou(欧先锋), Jiahao Huang(黄嘉豪), and Chaohong Lee(李朝红). Chin. Phys. B, 2021, 30(11): 110309.
[3] Unified approach to various quantum Rabi models witharbitrary parameters
Xiao-Fei Dong(董晓菲), You-Fei Xie(谢幼飞), Qing-Hu Chen(陈庆虎). Chin. Phys. B, 2020, 29(2): 020302.
[4] Analytic solutions for generalized PT-symmetric Rabi models
Yuanhao Dong(董元浩), Wen-Jing Zhang(张文静), Jing Liu(刘静), Xiao-Tao Xie(谢小涛). Chin. Phys. B, 2019, 28(11): 114202.
[5] An analytical variational method for the biased quantum Rabi model in the ultra-strong coupling regime
Bin-Bin Mao(毛斌斌), Maoxin Liu(刘卯鑫), Wei Wu(吴威), Liangsheng Li(李粮生), Zu-Jian Ying(应祖建), Hong-Gang Luo(罗洪刚). Chin. Phys. B, 2018, 27(5): 054219.
[6] Evolution of entanglement between qubits ultra-strongly coupling to a quantum oscillator
Ma Yue (马悦), Dong Kun (董锟), Tian Gui-Hua (田贵花). Chin. Phys. B, 2014, 23(9): 094204.
[7] Dynamics of Rabi model under second-order Born–Oppenheimer approximation
Wang Zhi-Hai (王治海), Zhou Duan-Lu (周端陆). Chin. Phys. B, 2013, 22(11): 114205.
[8] The adiabatic approximation solutions of cylindrical and spherical dust ion-acoustic solitary waves
Lü Ke-Pu (吕克璞), Dou Fu-Quan (豆福全), Sun Jian-An (孙建安), Duan Wen-Shan (段文山), Shi Yu-Ren (石玉仁). Chin. Phys. B, 2005, 14(1): 33-36.
No Suggested Reading articles found!