Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(12): 123103    DOI: 10.1088/1674-1056/25/12/123103
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

First-principle investigation on perovskite La1-xEuxGaO3

Yanni Gu(顾艳妮)1,2, Sheng Xu(徐胜)1,2, Xiaoshan Wu(吴小山)1
1. Laboratory of Solid State Microstructures and School of Physics, Nanjing University, Nanjing 210093, China;
2. Zhangjiagang Campus, Jiangsu University of Science and Technology, Zhangjiagang 215600, China
Abstract  

The pseudopotential method has been used to investigate the structural, electronic and magnetic properties of La1-xEuxGaO3 (x=0, 0.25, 0.5, 0.75, and 1) within the scheme of generalized gradient approximation. The spin-polarized calculations demonstrate that the ground state is an antiferromagnetic insulator for x≤0.5, while it is ferromagnetic half-metal at x>0.5. The substitutions of magnetic Eu ions for non-magnetic La ions produce and strength spin polarization, which forcefully urges the system from the insulator to the half metal. Meanwhile, Eu doping strengthens a stoner mechanism for ferromagnetism of La1-xEuxGaO3 (x=0.75 and 1), which may lead to a rapid increasing in the total magnetic moment and therefore, antiferromagnetic-ferromagnetic transition happens.

Keywords:  spin-polarized calculations      electronic and magnetic properties      Eu-doped Prevskite LaGaO3  
Received:  07 July 2016      Revised:  28 August 2016      Accepted manuscript online: 
PACS:  31.15.ej (Spin-density functionals)  
  31.15.ae (Electronic structure and bonding characteristics)  
  75.30.Hx (Magnetic impurity interactions)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. U1332205, 11274153, 10974081, and 10979017) and the Postdoctoral Fund of Jiangsu Province, China (Grant No. 1301019B).

Corresponding Authors:  Xiaoshan Wu     E-mail:  xswu@nju.edu.cn

Cite this article: 

Yanni Gu(顾艳妮), Sheng Xu(徐胜), Xiaoshan Wu(吴小山) First-principle investigation on perovskite La1-xEuxGaO3 2016 Chin. Phys. B 25 123103

[1] Qian J, Zhu Z W, Jiang G S and Liu W 2014 J. Power Sources 246 556
[2] Morales M, Roa J J, Perez-Falcón J M, Moure A, Tartaj J, Espiell F and Segarra M 2014 J. Power Sources 246 918
[3] Hong J E, Ida S and Ishihara T 2014 J. Power Sources 259 282
[4] Wu Y C and Chuang W L 2013 Int. J. Hydrogen Energy 38 12392
[5] Vedat S, Hasan O and Faruk O M 2013 J. Eur. Ceram. Soc. 33 1435
[6] Liu X and Lin J 2006 J. Appl. Phys. 100 124306
[7] Liu X and Lin J 2007 Appl. Phys. Lett. 90 184109
[8] Liu X, Pang R, Quan Z, Yang J and Lin J 2007 J. Electrochem. Soc. 154 J185
[9] Liu X and Lin J 2008 J. Mater. Chem. 18 221
[10] Parveen and Gaur N K 2012 Solid State Sci. 14 814
[11] Marti M, Fisher P, Altorfer F, Sheel H J and Tadin M 1994 J. Phys.:Condens. Matter 6 127
[12] Sood K, Singh K and Pandey O P 2014 J. Renew. Sustain. Energy 6 063112
[13] Li Z L, An X Y, Cheng X L, Wang X Mi, Zhang H, Peng L P and Wu W D 2014 Chin. Phys. B 23 037104
[14] Sandeep, Rai D P, Shankar A, Ghimire M P, Sakhya A P, Sinha T P, Khenata R, Omran S B and Thapa R K 2016 Chin. Phys. B 25 067101
[15] Huang C B, Wu H X, Ni Y B, Wang Z Y, Qi M and Zhang C Li 2016 Chin. Phys. B 25 086201
[16] Zhang Y R, Zhang L, Ren J F, Yuan X B and Hu G C 2015 Acta Phys. Sin. 64 178103 (in Chinese)
[17] Wang W H, Zhao G Z and Liang X X 2013 Chin. Phys. B 22 120205
[18] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[19] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
[20] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[21] see http://stokes.byu.edu/findsym.html.
[22] Häussermann U, Blomqvist H and Noréus D 2002 Inorg. Chem. 41 3684
[23] Berkowski M, Fink-Finowicki J, Byszewski P, Diduszko R, Kowalska E, Aleksiyko R, Piekarczyk W, Vasylechko L O, Savytskij D I, Perchuc  L and KapusAÂniak J 2001 J. Cryst. Growth 222 194
[24] Glowacki M, Runk T, Domukhovski V, Diduszko R, Mirkowsk M, Berkowski M and Dabrowski B 2011 J. Alloys Compd. 509 1756
[25] Knight S K 2012 J. Solid State Chem. 194 286
[26] Dhak P, Pramanik P, Bhattacharya S, Roy A, Achary S N and Tyagi A K 2011 Phys. Status Solidi B 248 1884
[27] Marezio M, Remeika J P and Dernier P D 1968 Inorg. Chem. 7 1337
[28] Denton A R and Ashcroft N W 1991 Phys. Rev. A 43 3161
[29] Alejandro Ŕ, Dillon D F, Jeffrey A E, Serdar O and Peter Z 2013 Phys. Rev. B 87 245117
[1] Strain engineering of electronic and magnetic properties of Ga2S2 nanoribbons
Bao-Ji Wang(王宝基), Xiao-Hua Li(李晓华), Li-Wei Zhang(张利伟), Guo-Dong Wang(王国东), San-Huang Ke(柯三黄). Chin. Phys. B, 2017, 26(5): 057102.
[2] Effects of IIIB transition metals on optoelectronic and magnetic properties of HoMnO3: A first principles study
H. A. Rahnamaye Aliabad, Battal G. Yalcin. Chin. Phys. B, 2015, 24(11): 117102.
[3] The relativistic density functional investigations on geometries, electronic and magnetic properties of Irn (n=1–13) clusters
Guo Ping(郭平), Zheng Ji-Ming(郑继明), Zhao Pei(赵佩), Zheng Lin-Lin(郑琳琳), and Ren Zhao-Yu(任兆玉). Chin. Phys. B, 2010, 19(8): 083601.
[4] Stability of small Ni-Ti bimetallic clusters studied by density functional theory
Chen Zhen-Gang(陈振岗), Xie Zun(谢尊), Li You-Cheng(李有成), Ma Qing-Min(马庆敏), and Liu Ying(刘英). Chin. Phys. B, 2010, 19(4): 043102.
No Suggested Reading articles found!