Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(11): 117504    DOI: 10.1088/1674-1056/25/11/117504
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Improvement in coercivity,thermal stability,and corrosion resistance of sintered Nd-Fe-B magnets with Dy80Ga20 intergranular addition

Beibei Zhou(周贝贝)1, Xiangbin Li(李向斌)1, Xuejing Cao(曹学静)1, Gaolin Yan(严高林)1, Aru Yan(闫阿儒)2
1 School of Physics and Technology, Wuhan university, Wuhan 430072, China;
2 Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
Abstract  To investigate the coercivity, corrosion resistance, and thermal stability of Nd-Fe-B magnets, their properties were investigated at room and high temperature before and after doping with Dy80Ga20 (at.%) powder. The coercivity of the magnets increased from the undoped value of 12.72 kOe to a doped value of 21.44 kOe. A micro-structural analysis indicates that a well-developed core-shell structure forms in the magnets doped with Dy80Ga20 powder. The improvement in magnetic properties is believed to be related to the refined and uniform matrix grains, continuous grain boundaries, and a hardened (Nd, Dy)2Fe14B shell surrounding the matrix grains. Additionally, the doped magnets exhibit an obvious improvement in thermal stability. For the magnets with added Dy80Ga20 powder, the temperature coefficients of remanence (α) and coercivity (β) increased to -0.106%℃-1 and -0.60%℃-1 over the range 20-100℃, compared to temperature coefficients of -0.117%℃-1 (α) and -0.74%℃-1 (β) in the regular magnets without Dy80Ga20 powder. The irreversible loss of magnetic flux (Hirr) was investigated at different temperatures. After being exposed to 150℃ for 2 h, the Hirr of magnets with 4 wt.% Dy80Ga20 decreased by ~95% compared to that of the undoped magnets. The enhanced temperature coefficients and Hirr indicate improved thermal stability in the doped Nd-Fe-B magnets. The intergranular addition of Dy80Ga20 also improved the corrosion resistance of the magnets because of the enhanced intergranular phase. In a corrosive atmosphere for 96 h, the mass loss of the sintered magnets with 4 wt.% Dy80Ga20 was 2.68 mg/cm2, less than 10% of that suffered by the undoped magnets (28.1 mg/cm2).
Keywords:  Nd-Fe-B permanent magnet      magnetic property      thermal stability      corrosion resistance  
Received:  19 May 2016      Revised:  09 August 2016      Accepted manuscript online: 
PACS:  75.50.Ww (Permanent magnets)  
  75.30.-m (Intrinsic properties of magnetically ordered materials)  
  65.40.-b (Thermal properties of crystalline solids)  
  82.45.Bb (Corrosion and passivation)  
Fund: Project supported by the Ministry of Science and Technology of China (Grant Nos. 2014DFB50130 and 2011CB612304) and the National Natural Science Foundation of China (Grant Nos. 51172168 and 51072139).
Corresponding Authors:  Gaolin Yan     E-mail:  gaolinyan@whu.edu.cn

Cite this article: 

Beibei Zhou(周贝贝), Xiangbin Li(李向斌), Xuejing Cao(曹学静), Gaolin Yan(严高林), Aru Yan(闫阿儒) Improvement in coercivity,thermal stability,and corrosion resistance of sintered Nd-Fe-B magnets with Dy80Ga20 intergranular addition 2016 Chin. Phys. B 25 117504

[1] Sagawa M, Fujimura S, Togawa N, Yamamoto H and Matsuura Y 1984 J. Appl. Phys. 55 2083
[2] Gutfleisch O, Willard M A, Brück E, Chen C H, Sankar S G and Liu J P 2011 Adv. Mater. 23 821
[3] Chen B C, Liu X M, Chen R J, Guo S, Yan C J, Lee D and Yan A R 2012 J. Appl. Phys. 111 07A710
[4] Schultz L, El-Aziz A M, Barkleit G and Mummert K 1999 Mater. Sci. Eng. A 267 307
[5] Ni J J, Ma T Y and Yan M 2012 Mater. Lett. 75 1
[6] Liu J, Sepehri-Amin H, Ohkubo T, Hioki K, Hattori A, Schrefl T and Hono K 2013 Acta Mater. 61 5387
[7] Hirosawa S, Matsuura Y, Yamamoto H, Fujimura S, Sagawa M and Yamauchi H 1986 J. Appl. Phys. 59 873
[8] Boltich E, Oswald E, Huang M, Hirosawa S, Wallace W and Burzo E 1985 J. Appl. Phys. 57 4106
[9] Yan G L, McGuiness P J, Farr J P G and Harris I R 2010 J. Alloy. Compd. 491 L20
[10] Komuro M, Satsu Y and Suzuki H 2010 IEEE Trans. Magn. 46 3831
[11] Liu X L, Wang X J, Liang L P, Zhang P, Jin J Y, Zhang Y J, Ma T Y and Yan M 2014 J. Magn. Magn. Mater. 370 76
[12] Cao X J, Chen L, Guo S, Li X B, Yi P P, Yan A R and Yan G L 2015 J. Alloy. Compd. 631 315
[13] Wang X L, Zhao L N, Ding K H, Cui S L, Sun Y C and Li M S 2015 Chin. Phys. B 24 037506
[14] Yan G L and Fang Z H 2015 Chin. Phys. B 24 107503
[15] Zhang X F, Guo S, Yan C J, Cai L W, Chen R J, Lee D and Yan A R 2014 J. Appl. Phys. 115 17A757
[16] Pandian, Chandrasekaran V, Markandeyulu G, Iyer K and Rao K R 2002 J. Appl. Phys. 92 6082
[17] Kianvash and Harris I 1991 J. Appl. Phys. 70 6453
[18] Grieb, Pithan C, Henig E T and Petzow G 1991 J. Appl. Phys. 70 6354
[19] Strzeszewski, Hadjipanayis G and Kim A 1988 J. Appl. Phys. 64 5568
[20] Pollard, Grundy P, Parker S and Lord D 1988 IEEE Trans. Magn. 24 1626
[21] Ni J J, Ma T Y, Wu Y R and Yan M 2010 J. Magn. Magn. Mater. 322 3710
[22] Wan F M, Zhang Y F, Han J Z, Liu S Q, Liu T, Zhou L, Fu J B, Zhou D, Zhang X D, Yang J B, Yang Y C, Chen J and Deng Z W 2014 J. Appl. Phys. 115 203910
[23] Sugimoto S, Gutfleisch O and Harris I R 1997 J. Alloy. Compd. 260 284
[24] Ma B M, Liu W L, Liang Y L, Scott D W and Bounds C O 1994 J. Appl. Phys. 75 6628
[25] Gauder D R, Froning M H, White R J and Ray A E 1988 J. Appl. Phys. 63 3522
[26] Cui X G, Cui C Y, Cheng X N and Xu X J 2014 Intermetallics 55 118
[1] Magnetic properties and magnetocaloric effects of Tm1-xErxCuAl (x = 0.25, 0.5, and 0.75) compounds
Hao Sun(孙浩), Junfeng Wang(王俊峰), Lu Tian(田路), Jianjian Gong(巩建建), Zhaojun Mo(莫兆军), Jun Shen(沈俊), and Baogen Shen(沈保根). Chin. Phys. B, 2022, 31(12): 127501.
[2] Luminescent characteristics of Tm3+/Tb3+/Eu3+ tri-doped Na5Y9F32 single crystals for white emission with high thermal stability
Lizhi Fang(方立志), Xiong Zhou(周雄), Zhiwei Zhao(赵志伟), Biao Zheng(郑标), Haiping Xia(夏海平), Jun Wang(王军), Hongwei Song(宋宏伟), and Baojiu Chen(陈宝玖). Chin. Phys. B, 2022, 31(12): 127802.
[3] Magnetic properties and magnetocaloric effect in RE55Co30Al10Si5 (RE = Er and Tm) amorphous ribbons
Hao Sun(孙浩), Junfeng Wang(王俊峰), Lu Tian(田路), Jianjian Gong(巩建建), Zhaojun Mo(莫兆军), Jun Shen(沈俊), and Baogen Shen(沈保根). Chin. Phys. B, 2022, 31(11): 117503.
[4] Influences of nanoparticles and chain length on thermodynamic and electrical behavior of fluorine liquid crystals
Ines Ben Amor, Lotfi Saadaoui, Abdulaziz N. Alharbi, Talal M. Althagafi, and Taoufik Soltani. Chin. Phys. B, 2022, 31(10): 104202.
[5] Magnetic and electronic properties of two-dimensional metal-organic frameworks TM3(C2NH)12
Zhen Feng(冯振), Yi Li(李依), Yaqiang Ma(马亚强), Yipeng An(安义鹏), and Xianqi Dai(戴宪起). Chin. Phys. B, 2021, 30(9): 097102.
[6] High-frequency magnetic properties and core loss of carbonyl iron composites with easy plane-like structures
Guo-Wu Wang(王国武), Chun-Sheng Guo(郭春生), Liang Qiao(乔亮), Tao Wang(王涛), and Fa-Shen Li(李发伸). Chin. Phys. B, 2021, 30(2): 027504.
[7] Effects of WC-Co reinforced Ni-based alloy by laser melting deposition: Wear resistance and corrosion resistance
Zhao-Zhen Huang(黄昭祯), Zhi-Chen Zhang(张志臣), Fan-Liang Tantai(澹台凡亮), Hong-Fang Tian(田洪芳), Zhen-Jie Gu(顾振杰), Tao Xi(郗涛), Zhu Qian(钱铸), and Yan Fang(方艳). Chin. Phys. B, 2021, 30(1): 016802.
[8] First-principles study of magnetism of 3d transition metals and nitrogen co-doped monolayer MoS2
Long Lin(林龙), Yi-Peng Guo(郭义鹏), Chao-Zheng He(何朝政), Hua-Long Tao(陶华龙), Jing-Tao Huang(黄敬涛), Wei-Yang Yu(余伟阳), Rui-Xin Chen(陈瑞欣), Meng-Si Lou(娄梦思), Long-Bin Yan(闫龙斌). Chin. Phys. B, 2020, 29(9): 097102.
[9] Thermal stability of magnetron sputtering Ge-Ga-S films
Lei Niu(牛磊), Yimin Chen(陈益敏), Xiang Shen(沈祥), Tiefeng Xu(徐铁峰). Chin. Phys. B, 2020, 29(8): 087803.
[10] Energy transfer, luminescence properties, and thermal stability of color tunable barium pyrophosphate phosphors
Meng-Jiao Xu(徐梦姣), Su-Xia Li(李素霞), Chen-Chen Ji(季辰辰), Wan-Xia Luo(雒晚霞), Lu-Xiang Wang(王鲁香). Chin. Phys. B, 2020, 29(6): 063301.
[11] Effects of 3d-transition metal doping on the electronic and magnetic properties of one-dimensional diamond nanothread
Zhenzhen Miao(苗珍珍), Can Cao(曹粲), Bei Zhang(张蓓), Haiming Duan(段海明), Mengqiu Long(龙孟秋). Chin. Phys. B, 2020, 29(6): 066101.
[12] Structural and thermal stabilities of Au@Ag core-shell nanoparticles and their arrays: A molecular dynamics simulation
Hai-Hong Jia(贾海洪), De-Liang Bao(包德亮), Yu-Yang Zhang(张余洋), Shi-Xuan Du(杜世萱). Chin. Phys. B, 2020, 29(4): 048701.
[13] Characteristics of urea under high pressure and high temperature
Shuai Fang(房帅), Hong-An Ma(马红安), Long-Suo Guo(郭龙锁), Liang-Chao Chen(陈良超), Yao Wang(王遥), Lu-Yao Ding(丁路遥), Zheng-Hao Cai(蔡正浩), Jian Wang(王健), Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2019, 28(9): 098101.
[14] Grain boundary restructuring and La/Ce/Y application in Nd-Fe-B magnets
Mi Yan(严密), Jiaying Jin(金佳莹), Tianyu Ma(马天宇). Chin. Phys. B, 2019, 28(7): 077507.
[15] Surface stabilized cubic phase of CsPbI3 and CsPbBr3 at room temperature
Feng Yang(杨凤), Cong Wang(王聪), Yuhao Pan(潘宇浩), Xieyu Zhou(周谐宇), Xianghua Kong(孔祥华), Wei Ji(季威). Chin. Phys. B, 2019, 28(5): 056402.
No Suggested Reading articles found!