Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(11): 114206    DOI: 10.1088/1674-1056/25/11/114206
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Effects of magnetic field on photon-induced quantum transport in a single dot-cavity system

Nzar Rauf Abdullah1,2, Aziz H Fatah1, Jabar M A Fatah1
1 Physics Department, College of Science, University of Sulaimani, Kurdistan Region, Iraq;
2 Science Institute, University of Iceland, Dunhaga 3, IS-107 Reykjavik, Iceland
Abstract  In this study, we show how a static magnetic field can control photon-induced electron transport through a quantum dot system coupled to a photon cavity. The quantum dot system is connected to two electron reservoirs and exposed to an external perpendicular static magnetic field. The propagation of electrons through the system is thus influenced by the static magnetic and the dynamic photon fields. It is observed that the photon cavity forms photon replica states controlling electron transport in the system. If the photon field has more energy than the cyclotron energy, then the photon field is dominant in the electron transport. Consequently, the electron transport is enhanced due to activation of photon replica states. By contrast, the electron transport is suppressed in the system when the photon energy is smaller than the cyclotron energy.
Keywords:  cavity quantum electrodynamics      electronic transport in mesoscopic systems      quantum interference devices      magnetotransport phenomena  
Received:  02 April 2016      Revised:  25 June 2016      Accepted manuscript online: 
PACS:  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
  73.23.-b (Electronic transport in mesoscopic systems)  
  78.20.Jq (Electro-optical effects)  
  75.47.-m (Magnetotransport phenomena; materials for magnetotransport)  
Corresponding Authors:  Nzar Rauf Abdullah     E-mail:  nzar.r.abdullah@gmail.com

Cite this article: 

Nzar Rauf Abdullah, Aziz H Fatah, Jabar M A Fatah Effects of magnetic field on photon-induced quantum transport in a single dot-cavity system 2016 Chin. Phys. B 25 114206

[1] Imamoglu A and Yamamoto Y 1994 Phys. Rev. Lett. 72 210
[2] Loss D and DiVincenzo D P 1998 Phys. Rev. A 57 120
[3] DiVincenzo D P 2005 Science 309 2173
[4] Petroff P M, Schmidt K H, Ribeiro G M, Lorke A and Kotthaus J 1997 Jpn J. Appl. Phys. 36 4068
[5] Kouwenhoven L P and McEuen P L Single Electron Transport Through a Quantum Dot, in Nanotechnology, (ed. Gregory Timp) (New York:Springer) pp. 471-535
[6] Fujisawa T, van der Wiel W G and Kouwenhoven L P 2000 Physica E 7 413
[7] Kouwenhoven L P, Jauhar S, McCormick K, Dixon D, McEuen P L, Nazarov Yu V, van der Vaart N C and Foxon C T 1994 Phys. Rev. B 50 2019
[8] Shibata K, Umeno A, Cha K M and Hirakawa K 2012 Phys. Rev. Lett. 109 077401
[9] Ishibashi K and Aoyagi Y 2002 Physica B 314 437
[10] Kouwenhoven L P, Jauhar S, Orenstein J, McEuen P L, Nagamune Y, Motohisa J and Sakaki H 1994 Phys. Rev. Lett. 73 3443
[11] Guo Y J and Nie W J 2015 Chin. Phys. B 24 094205
[12] Ye H, Peng Y W, Yu Z Y, Zhang W and Liu Y M 2015 Chin. Phys. B 24 114202
[13] Maksym P A and Chakraborty T 1990 Phys. Rev. Lett. 65 108
[14] van der Wiel W G, De Franceschi S, Elzerman J M, Fujisawa T Tarucha S and Kouwenhoven L P 2002 Rev. Mod. Phys. 75 1
[15] Thomas I 2010 Semiconductor Nanostructures (New York:Oxford University Press)
[16] Abdullah N R, Tang C S and Gudmundsson V 2010 Phys. Rev. B 82 195325
[17] Hagenmüller D and Ciuti C Phys. Rev. Lett. 109267403
[18] Maissen C, Scalari G, Valmorra F, Beck M, Faist J, Cibella S, Leoni R, Reichl C, Charpentier C and Wegscheider W 2014 Phys. Rev. B 90 205309
[19] Abdullah N R 2015 Cavity-photon Controlled Electron Transport through Quantum Dots and Waveguide Systems (PhD Thesis:University of Iceland, Reykjavik, Iceland)
[20] Nakajima S 1958 Prog. Theor. Phys. 20 948
[21] Zwanzig R 1960 J. Chem. Phys. 33 1338
[22] Abdullah N R, Tang C S, Manolescu A and Gudmundsson V 2016 ACS Photonics 3 249
[1] Multiplexing technology based on SQUID for readout of superconducting transition-edge sensor arrays
Xinyu Wu(吴歆宇), Qing Yu(余晴), Yongcheng He(何永成), Jianshe Liu(刘建设), and Wei Chen(陈炜). Chin. Phys. B, 2022, 31(10): 108501.
[2] Reversible waveform conversion between microwave and optical fields in a hybrid opto-electromechanical system
Li-Guo Qin(秦立国), Zhong-Yang Wang(王中阳), Jie-Hui Huang(黄接辉), Li-Jun Tian(田立君), and Shang-Qing Gong(龚尚庆). Chin. Phys. B, 2021, 30(6): 068502.
[3] Perfect photon absorption based on the optical parametric process
Yang Zhang(张旸), Yu-Bo Ma(马宇波), Xin-Ping Li(李新平), Yu Guo(郭钰), and Chang-Shui Yu(于长水). Chin. Phys. B, 2021, 30(6): 064203.
[4] Absorption interferometer of two-sided cavity
Miao-Di Guo(郭苗迪) and Hong-Mei Li(李红梅). Chin. Phys. B, 2021, 30(5): 054202.
[5] Influence of driving ways on measurement of relative phase in a two-atoms cavity system
Daqiang Bao(包大强), Jingping Xu(许静平), Yaping Yang(羊亚平). Chin. Phys. B, 2020, 29(4): 043702.
[6] Qubits based on semiconductor quantum dots
Xin Zhang(张鑫), Hai-Ou Li(李海欧), Ke Wang(王柯), Gang Cao(曹刚), Ming Xiao(肖明), Guo-Ping Guo(郭国平). Chin. Phys. B, 2018, 27(2): 020305.
[7] Dynamic properties of atomic collective decay in cavity quantum electrodynamics
Yu-Feng Han(韩玉峰), Cheng-Jie Zhu(朱成杰), Xian-Shan Huang(黄仙山), Ya-Ping Yang(羊亚平). Chin. Phys. B, 2018, 27(12): 124206.
[8] Controllable double electromagnetically induced transparency in a closed four-level-loop cavity–atom system
Miao-Di Guo(郭苗迪), Xue-Mei Su(苏雪梅). Chin. Phys. B, 2017, 26(7): 074207.
[9] Low-Tc direct current superconducting quantum interference device magnetometer-based 36-channel magnetocardiography system in a magnetically shielded room
Qiu Yang (邱阳), Li Hua (李华), Zhang Shu-Lin (张树林), Wang Yong-Liang (王永良), Kong Xiang-Yan (孔祥燕), Zhang Chao-Xiang (张朝祥), Zhang Yong-Sheng (张永升), Xu Xiao-Feng (徐小峰), Yang Kang (杨康), Xie Xiao-Ming (谢晓明). Chin. Phys. B, 2015, 24(7): 078501.
[10] Implementation of a one-dimensional quantum walk in both position and phase spaces
Qin Hao (秦豪), Xue Peng (薛鹏). Chin. Phys. B, 2014, 23(1): 010301.
[11] Generation of four-atom Greenberger-Horn-Zeilinger state via adiabatic passage
Zhang Chun-Ling (张春玲), Chen Mei-Feng (陈美锋). Chin. Phys. B, 2013, 22(5): 050307.
[12] Study on signal intensity of low field nuclear magnetic resonance via indirect coupling measurement
Jiang Feng-Ying (蒋凤英), Wang Ning (王宁), Jin Yi-Rong (金贻荣), Deng Hui (邓辉), Tian Ye (田野), Lang Pei-Lin (郎佩琳), Li Jie (李洁), Chen Ying-Fei (陈莺飞), Zheng Dong-Ning (郑东宁). Chin. Phys. B, 2013, 22(4): 047401.
[13] Quantum discord dynamics of two qubits in the single-mode cavities
Wang Chen (王晨), Chen Qing-Hu (陈庆虎). Chin. Phys. B, 2013, 22(4): 040304.
[14] Interaction of pair coherent state with a three-level Λ-type atom and generation of a modified Bessel-Gaussian state with a vortex structure
Tang Hui-Qin (唐慧琴), Li Shao-Xin (李绍新), Tang Ying (唐英), Zheng Xiao-Juan (郑小娟), Zhu Kai-Cheng (朱开成). Chin. Phys. B, 2013, 22(2): 020310.
[15] Nonlocal quantum cloning via quantum dots trapped in distant cavities
Yu Tao(于涛), Zhu Ai-Dong(朱爱东), and Zhang Shou(张寿) . Chin. Phys. B, 2012, 21(5): 050304.
No Suggested Reading articles found!