Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(11): 113401    DOI: 10.1088/1674-1056/25/11/113401
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Landau-Zener model for electron loss of low-energy negative fluorine ions to surface cations during grazing scattering on a LiF (001) surface

Wang Zhou(周旺), Meixiao Zhang(张鹛枭), Lihua Zhou(周利华), Hu Zhou(周虎), Yulong Ma(马玉龙), Yanling Guo(郭艳玲), Lin Chen(陈林), Ximeng Chen(陈熙萌)
School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
Abstract  There is no available theoretical description of electron transfer from negative projectiles at a velocity below 0.1 a.u. during grazing scattering on insulating surfaces. In this low-velocity range, electron-capture and electron-loss processes coexist. For electron capture, the Demkov model has been successfully used to explain the velocity dependence of the negative-ion fraction formed from fast atoms during grazing scattering on insulating surfaces. For electron loss, we consider that an electron may be transferred from the formed ionic diabatic quasi-molecular state to the formed covalent diabatic quasi-molecular state by the crossing of the potential curves of negative projectiles approaching the surface cations, which can be described by the Landau-Zener two-energy-level crossing model. Combining these two models, we obtain good agreement between the experimental and calculated data for the F--LiF(001) collision system, which is briefly discussed.
Keywords:  charge transfer      negative ion      grazing scattering      ionic crystal  
Received:  16 January 2016      Revised:  08 July 2016      Accepted manuscript online: 
PACS:  34.35.+a (Interactions of atoms and molecules with surfaces)  
  78.55.Fv (Solid alkali halides)  
  79.20.Rf (Atomic, molecular, and ion beam impact and interactions with surfaces)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11175075, 11405078, 11474140, 11404152, and 11305083).
Corresponding Authors:  Lin Chen, Ximeng Chen     E-mail:  chenlin@lzu.edu.cn;chenxm@lzu.edu.cn

Cite this article: 

Wang Zhou(周旺), Meixiao Zhang(张鹛枭), Lihua Zhou(周利华), Hu Zhou(周虎), Yulong Ma(马玉龙), Yanling Guo(郭艳玲), Lin Chen(陈林), Ximeng Chen(陈熙萌) Landau-Zener model for electron loss of low-energy negative fluorine ions to surface cations during grazing scattering on a LiF (001) surface 2016 Chin. Phys. B 25 113401

[1] Souda R, Aizawa T, Hayami W, Otani S and Ishizawa Y 1990 Phys. Rev. B 42 7761
[2] Souda R, Hayami W, Aizawa T, Otani S and Ishizawa Y 1992 Phys. Rev. B 45 14358
[3] Souda R, Yamamoto K, Hayami W, Aizawa T and Ishizawa Y 1995 Phys. Rev. B 51 4463
[4] Souda R, Hayami W, Aizawa T and Ishizawa Y 1991 Phys. Rev. B 43 10062
[5] Auth C, Borisov A G and Winter H 1995 Phys. Rev. Lett. 75 2292
[6] Maazouz M, Guillemot L, Lacombe S and Esaulov V A 1996 Phys. Rev. Lett. 77 4265
[7] Ustaze S, Verucchi R, Lacombe S, Guillemot L and Esaulov V A 1997 Phys. Rev. Lett. 79 3526
[8] Blauth D and Winter H 2011 Nucl. Instr. and Meth. B 269 1175
[9] Auth C, Mertens A and Winter H 1998 Phys. Rev. Lett. 81 4831
[10] Roncin P, Villette J, Atanas J P and Khemliche H 1999 Phys. Rev. Lett. 83 864
[11] Chen L, Guo Y L, Jia J J, Zhang H Q, Cui Y, Shao J X, Yin Y Z, Qiu X Y, Lv X Y, Sun G Z, Wang J, Chen Y F, Xi F Y and Chen X M 2011 Phys. Rev. A 84 032901
[12] Chen L, Ding B, Li Y, Qiu S L, Xiong F F, Zhou H, Guo Y L and Chen X M 2013 Phys. Rev. A 88 044901
[13] Borisov A G, Sidis V and Winter H 1996 Phys. Rev. Lett. 77 1893
[14] Borisov A G and Sidis V 1997 Phys. Rev. B 56 10628
[15] Demkov Y N 1963 Zh. Eksp Teor. Fiz. 45 195
[16] Demkov Y N 1964 Sov. Phys. JETP 18 138
[17] Zhou H, Chen L, Feng D, Guo Y L, Ji M C, Wang G Y, Zhou W, Li Y, Zhao L and Chen X M 2012 Phys. Rev. A 85 014901
[18] Borisov A G and Esaulov V A 2000 J. Phys.:Condens. Matter 12 R177
[19] Roncin P, Borisov A G, Khemliche H and Momeni A 2002 Phys. Rev. Lett. 89 043201
[20] Zunger A and Freeman A J 1977 Phys. Rev. B 16 2901
[21] Tessman J R, Kahn A H and Shockley W 1953 Phys. Rev. 92 890
[22] Deutscher S A, Borisov A G and Sidis V 1999 Phys. Rev. A 59 4446
[23] Tiwald P, Grafe S, Burgdorfer J and Wirtz L 2013 Nucl. Instr. Meth. B 317 18-22
[24] Auth C, Mertens A, Winter H, Borisov A G and Sidis V 1998 Phys. Rev. A 57 351
[25] Borisov A G, Sidis V and Winter H 1996 Phys. Rev. Lett. 77 1893
[26] Winter H, Mertens A, Auth C and Borisov A G 1996 Phys. Rev. A 54 2486
[27] Landau L D and Lifshitz E M Quantum Mechanics (Nonrelativistic Theory) (3rd Edn.)
[28] Rost J M 1999 Phys. Rev. Lett. 82 1652
[29] Winter H, Auth C and Borisov A G 1996 Nucl. Instr. Meth. B 115 133
[30] Page L J and Hygh E H 1970 Phys. Rev. B 1 3472
[31] Ewing D H and Seitz F 1936 Phys. Rev. 50 760
[32] Milgram A and Givens M P 1962 Phys. Rev. 125 1506
[33] Mahan G D 1980 Phys. Rev. B 21 4791
[34] Moore C 1949 Atomic Energy Levels, Natl. Bur. Stand. (U.S.) Circ. No 467(U.S. GPO, Washington, DC, 1949) p. 8
[35] Zygelman B, Dalgarno A, Kimura M and Lane N F 1989 Phys. Rev. A 40 2340
[36] West B W, Lane N F and Cohen J S 1982 Phys. Rev. A 26 3164
[37] Zygelman B and Dalgarno A 1988 Phys. Rev. A 38 1877
[38] Yan L L, Liu L, Wu Y, Qu Y Z, Wang J G and Buenker R J 2013 Phys. Rev. A 88 012709
[39] Liu C H and Wang J G 2013 Phys. Rev. A 87 042709
[40] Olson R E, Smith F T and Bauer E 1971 Appl. Opt. 10 1848
[41] Olson R E 1972 Phys. Rev. A 6 1822
[42] Bates D R 1960 Proc. R. Soc. Lond. A 257 22
[43] Zener C 1932 Proc. Roy. Soc. A 137 696
[44] Landau L D 1932 Phys. Z. Sowjetunion 2 46
[45] Ostrovsky V N 1991 J. Phys. B 24 4553
[46] Belyaev A K 2013 Phys. Rev. A 88 052704
[1] Computational design of ratiometric two-photon fluorescent Zn2+ probes based on quinoline and di-2-picolylamine moieties
Zhe Shao(邵哲), Wen-Ying Zhang(张纹莹), and Ke Zhao(赵珂). Chin. Phys. B, 2022, 31(5): 053302.
[2] Ferroelectric Ba0.75Sr0.25TiO3 tunable charge transfer in perovskite devices
Zi-Xuan Chen(陈子轩), Jia-Lin Sun(孙家林), Qiang Zhang(张强), Chong-Xin Qian(钱崇鑫), Ming-Zi Wang(王明梓), and Hong-Jian Feng(冯宏剑). Chin. Phys. B, 2022, 31(5): 057202.
[3] Extended phase diagram of La1-xCaxMnO3 by interfacial engineering
Kexuan Zhang(张可璇), Lili Qu(屈莉莉), Feng Jin(金锋), Guanyin Gao(高关胤), Enda Hua(华恩达), Zixun Zhang(张子璕), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬). Chin. Phys. B, 2021, 30(12): 126802.
[4] Novel CMOS image sensor pixel to improve charge transfer speed and efficiency by overlapping gate and temporary storage diffusing node
Cui Yang(杨翠), Guo-Liang Peng(彭国良), Wei Mao(毛维), Xue-Feng Zheng(郑雪峰), Chong Wang(王冲), Jin-Cheng Zhang(张进成), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(1): 018502.
[5] Exploration and elaboration of photo-induced proton transfer dynamical mechanism for novel 2-[1,3]dithian-2-yl-6-(7aH-indol-2-yl)-phenol sensor
Lei Xu(许磊), Tian-Jie Zhang(张天杰), Qiao-Li Zhang(张巧丽), Da-Peng Yang(杨大鹏). Chin. Phys. B, 2020, 29(5): 053102.
[6] Tunable metal-insulator transition in LaTiO3/CaVO3 superlattices: A theoretical study
Ya-Kui Weng(翁亚奎), Meng-Lan Shen(沈梦兰), Jie Li(李杰), and Xing-Ao Li(李兴鳌). Chin. Phys. B, 2020, 29(12): 127303.
[7] Theoretical insights into photochemical ESITP process for novel DMP-HBT-py compound
Guang Yang(杨光)†, Kaifeng Chen(陈凯锋), Gang Wang(王岗), and Dapeng Yang(杨大鹏). Chin. Phys. B, 2020, 29(10): 103103.
[8] Ab initio investigation of excited state dual hydrogen bonding interactions and proton transfer mechanism for novel oxazoline compound
Yu-Sheng Wang(王玉生), Min Jia(贾敏), Qiao-Li Zhang(张巧丽), Xiao-Yan Song(宋晓燕), Da-Peng Yang(杨大鹏). Chin. Phys. B, 2019, 28(10): 103105.
[9] Effect of intramolecular and intermolecular hydrogen bonding on the ESIPT process in DEAHB molecule
Hui Li(李慧), Lina Ma(马丽娜), Hang Yin(尹航), Ying Shi(石英). Chin. Phys. B, 2018, 27(9): 098201.
[10] Theoretical study on twisted intramolecular charge transfer of 1-aminoanthraquinone in different solvents
Si-Mei Sun(孙四梅), Song Zhang(张嵩), Chao Jiang(江超), Xiao-Shan Guo(郭小珊), Yi-Hui Hu(胡义慧). Chin. Phys. B, 2018, 27(8): 083401.
[11] Band offset and electronic properties at semipolar plane AlN(1101)/diamond heterointerface
Kong-Ping Wu(吴孔平), Wen-Fei Ma(马文飞), Chang-Xu Sun(孙昌旭), Chang-Zhao Chen(陈昌兆), Liu-Yi Ling(凌六一), Zhong-Gen Wang(王仲根). Chin. Phys. B, 2018, 27(5): 058101.
[12] Theoretical investigation on the excited state intramolecular proton transfer in Me2N substituted flavonoid by the time-dependent density functional theory method
Hang Yin(尹航), Ying Shi(石英). Chin. Phys. B, 2018, 27(5): 058201.
[13] Current loss of magnetically insulated coaxial diode with cathode negative ion
Dan-Ni Zhu(朱丹妮), Jun Zhang(张军), Hui-Huang Zhong(钟辉煌), Jing-Ming Gao(高景明), Zhen Bai(白珍). Chin. Phys. B, 2018, 27(2): 020501.
[14] Responsive mechanism and molecular design of di-2-picolylamine-based two-photon fluorescent probes for zinc ions
Mei-Yu Zhu(朱美玉), Ke Zhao(赵珂), Jun Song(宋军), Chuan-Kui Wang(王传奎). Chin. Phys. B, 2018, 27(2): 023302.
[15] Theoretical study of the radiative decay processes in H+(D+, T+)-Be collisions
Huilin Wei(魏惠琳), Xiaojun Liu(刘晓军). Chin. Phys. B, 2018, 27(12): 123101.
No Suggested Reading articles found!