Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(2): 020501    DOI: 10.1088/1674-1056/27/2/020501
GENERAL Prev   Next  

Current loss of magnetically insulated coaxial diode with cathode negative ion

Dan-Ni Zhu(朱丹妮), Jun Zhang(张军), Hui-Huang Zhong(钟辉煌), Jing-Ming Gao(高景明), Zhen Bai(白珍)
College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha 410073, China
Abstract  Current loss without an obvious impedance collapse in the magnetically insulated coaxial diode (MICD) is studied through experiment and particle-in-cell (PIC) simulation when the guiding magnetic field is strong enough. Cathode negative ions are clarified to be the predominant reason for it. Theoretical analysis and simulation both indicate that the velocity of the negative ion reaches up to 1 cm/ns due to the space potential between the anode and cathode gap (A-C gap). Accordingly, instead of the reverse current loss and the parasitic current loss, the negative ion loss appears during the whole pulse. The negative ion current loss is determined by its ionization production rate. It increases with diode voltage increasing. The smaller space charge effect caused by the beam thickening and the weaker radial restriction both promote the negative ion production under a lower magnetic field. Therefore, as the magnetic field increases, the current loss gradually decreases until the beam thickening nearly stops.
Keywords:  magnetically insulated coaxial diode (MICD)      cathode plasma      negative ion      current loss  
Received:  03 August 2017      Revised:  16 October 2017      Accepted manuscript online: 
PACS:  05.10.-a (Computational methods in statistical physics and nonlinear dynamics)  
  07.05.-t (Computers in experimental physics)  
  07.30.-t (Vacuum apparatus)  
  11.40.-q (Currents and their properties)  
Corresponding Authors:  Dan-Ni Zhu, Jun Zhang     E-mail:  360681625@qq.com;junzhang@nudt.edu.cn
About author:  05.10.-a; 07.05.-t; 07.30.-t; 11.40.-q

Cite this article: 

Dan-Ni Zhu(朱丹妮), Jun Zhang(张军), Hui-Huang Zhong(钟辉煌), Jing-Ming Gao(高景明), Zhen Bai(白珍) Current loss of magnetically insulated coaxial diode with cathode negative ion 2018 Chin. Phys. B 27 020501

[1] Zhang J, Zhong H and Luo L 2004 IEEE Trans. Plasma Sci. 32 236
[2] Qi Z, Zhang J, Zhang Q, Zhong H, Xu L and Yang L 2016 IEEE Electron Dev. Lett. 37 782
[3] Bai Z, Zhang J and Zhong H 2016 Phys. Plasmas 23 043109
[4] Zhang D, Zhang J, Zhong H and Jin Z 2012 Phys. Plasmas 19 103102
[5] Zhu D, Zhang J, Zhong H, Jin Z and Qi Z 2015 Phys. Plasmas 22 113301
[6] Miller R B 1982 An Introduction to the Physics of Intense Charged Particle Beams (New York:Plenum Press)
[7] Xiao R, Sun J, Huo S, Li X, Zhang L, Zhang X and Zhang L 2010 Phys. Plasmas 17 123107
[8] Wu P, Sun J and Ye H 2015 Phys. Plasmas 22 63109
[9] Miller R B, Prestwich K R, Poukey J W and Shope S L 1980 J. Appl. Phys. 51 3506
[10] Yalandin M I, Mesyats G A, Rostov V V, Sharypov K A, Shpak V G, Shunailov S A and Ulmaskulov M R 2015 Appl. Phys. Lett. 106 233504
[11] Sun J, Zhang Y, Song Z, Zhang X and Chen C 2013 Mod. Appl. Phys. 4 246(in Chinese)
[12] Sheffield R L, Montgomery M D, Parker J V and Riepe K B 1982 J. Appl. Phys. 53 5408
[13] Xiang F, Li C and Tan J 2011 High Power Laser and Particle Beams. 23 831(in Chinese)
[14] Ge X, Zhong H, Qian B, Zhang J, Liu L, Gao L, Yuan C and He J 2010 Appl. Phys. Lett. 97 241501
[15] Liu X 2005 High pulsed power technology (Beijing:National Defense Industry) (in Chinese)
[16] Zhang Y H, Ma Q S, Chang A, Zhou C M, Gan Y Q and Liu Z 2004 High Power Laser and Particle Beams 16 1437(in Chinese)
[17] Jones M E, Mostrom M A and Thode L E 1981 J. Appl. Phys. 52 4942
[18] Lovelace R V and Ott E 1974 Phys. Fluids 17 1263
[19] Van Devender J P, Stinnett R W and Anderson R J 1981 Appl. Phys. Lett. 38 229
[20] Wu H, Zeng Z, Wang L and Guo N 2014 Plasma Sci. Technol. 16 625
[21] Baker D H, Doverspike L D and Champion R L 1992 Phys. Rev. A 46 296
[22] Regan W Stinnett and Tim Stanley 1982 J. Appl. Phys. 53 3819
[23] Wu H, Zeng Z, Guo N, Zhang X, Lei T, Han J, Hu Y, Sun T and Wang L 2012 IEEE Trans. Plasma Sci. 40 1177
[24] Marton and LadislausLaszlo 1979 Methods of experimental physics:Vacuum physics and technology, Vol. 14(Academic Press)
[25] Schwirzke F, Hallal M P and Maruyama X K 1993 IEEE Trans. Plasma Sci. 21 410
[26] Gerber A and Herzenberg A 1985 Phys. Rev. B 31 6219
[27] Rous P J 1995 Phys. Rev. Lett. 74 1835
[28] Ottinger P F and Schumer J W 2006 Phys. Plasmas 13 63109
[29] Zhu D, Zhang J, Zhong H and Cai D 2016 Phys. Plasmas 23 81503
[30] Xu Q, Liu L 2012 Phys. Plasmas 19 093111
[31] Xiao R, Chen C, Deng Y, Cao Y, Sun J and Li J 2016 Phys. Plasmas 23 63114
[32] Swegle J A, Poukey J W and Leifeste G T 1985 Phys. Fluids 28 2882
[33] Belomyttsev S Y, Rostov V V, Romanchenko I V, Shunailov S A, Kolomiets M D, Mesyats G A, Sharypov K A, Shpak V G, Ulmaskulov M R and Yalandin M I 2016 J. Appl. Phys. 119 23304
[34] Korovin S D and Pegel I V 2012 International Conference on High-Power Particle Beams, 30 September-5 October, 2012, Karlsruhe, Germany
[1] Practical 2.45-GHz microwave-driven Cs-free H- ion source developed at Peking University
Tao Zhang(张滔), Shi-Xiang Peng(彭士香), Wen-Bin Wu(武文斌), Hai-Tao Ren(任海涛), Jing-Feng Zhang(张景丰), Jia-Mei Wen(温佳美), Teng-Hao Ma(马腾昊), Yao-Xiang Jiang(蒋耀湘), Jiang Sun(孙江), Zhi-Yu Guo(郭之虞), Jia-Er Chen(陈佳洱). Chin. Phys. B, 2018, 27(10): 105208.
[2] Landau-Zener model for electron loss of low-energy negative fluorine ions to surface cations during grazing scattering on a LiF (001) surface
Wang Zhou(周旺), Meixiao Zhang(张鹛枭), Lihua Zhou(周利华), Hu Zhou(周虎), Yulong Ma(马玉龙), Yanling Guo(郭艳玲), Lin Chen(陈林), Ximeng Chen(陈熙萌). Chin. Phys. B, 2016, 25(11): 113401.
[3] K—P—Burgers equation in negative ion-rich relativistic dusty plasma including the effect of kinematic viscosity
A N Dev, M K Deka, J Sarma, D Saikia, N C Adhikary. Chin. Phys. B, 2016, 25(10): 105202.
[4] Alternating-current losses in two-layer superconducting cables consisting of second-generation superconductors coated by U-shaped ferromagnetic materials
Ahmet Cicek, Fedai Inanir, Fedor Gömöry. Chin. Phys. B, 2013, 22(12): 128403.
[5] Electron flux distributions in photodetachment of HF- near an interface: theoretical imaging method study
Maryam Nawaz Awan, A. Afaq. Chin. Phys. B, 2013, 22(1): 013205.
[6] High accuracy calculation of the hydrogen negative ion in strong magnetic fields
Zhao Ji-Jun(赵继军), Wang Xiao-Feng(王晓峰), and Qiao Hao-Xue(乔豪学). Chin. Phys. B, 2011, 20(5): 053101.
[7] Transmission of 18 keV negative ions Cl- through nanocapillariesin Al2O3 membrane
Lü Xue-Yang(吕学阳),Chen Lin(陈林),Chen Xi-Meng(陈熙萌),Jia Juan-Juan(贾娟娟), Zhou Peng(周鹏),Zhou Chun-Lin(周春林), Qiu Xi-Yu(邱玺玉),Shao Jian-Xiong(邵剑雄), Cui Ying(崔莹),Yin Yong-Zhi(尹永智),Wang Hong-Wei(王宏伟),and Ji Ming-Chao(姬明超) . Chin. Phys. B, 2011, 20(1): 013401.
[8] Electric flux distribution in photodetachment of heteronuclear diatomic molecular negative ion
Wang De-Hua(王德华). Chin. Phys. B, 2010, 19(2): 020306.
[9] Velvet's multi-pulsed emission and multi-pulsed electron beams
Xia Lian-Sheng (夏连胜), Zhang Huang (张篁), Chen De-Biao (陈德彪), Zhang Kai-Zhi (张开志), Shi Jin-Shui (石金水), Zhang Lin-Wen (章林文). Chin. Phys. B, 2005, 14(9): 1779-1783.
[10] Two-dimensional hydrogen negative ion in a magnetic field
Xie Wen-Fang (解文方). Chin. Phys. B, 2004, 13(11): 1806-1810.
No Suggested Reading articles found!