Ultra-compact terahertz switch with graphene ring resonators
Jian-Zhong Sun(孙建忠)1,2, Le Zhang(章乐)2, Fei Gao(高飞)1
1 College of Computer Science & Technology, Zhejiang University of Technology, Hangzhou 310023, China; 2 Centre for THz Research, China Jiliang University, Hangzhou 310018, China
Abstract We propose and numerically demonstrate a compact terahertz wave switch which is composed of two graphene waveguides and three graphene ring resonators. Changing the bias voltage of the Fermi level in the center graphene ring, the resonant mode can be tuned when the plasmon waves in the waveguides and rings are coupled. We theoretically explain their mechanisms as being due to bias voltage change induced carrier density of graphene modification and the coupling coefficients of graphene plasmon effect after carrier density change, respectively. The mechanism of such a terahertz wave switch is further theoretically analyzed and numerically investigated with the aid of the finite element method. With an appropriate design, the proposed device offers the opportunity to ‘tune’ the terahertz wave ON-OFF with an ultra-fast, high extinction ratio and compact size. This structure has the potential applications in terahertz wave integrated circuits.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.