Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(10): 108701    DOI: 10.1088/1674-1056/25/10/108701
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Ultra-compact terahertz switch with graphene ring resonators

Jian-Zhong Sun(孙建忠)1,2, Le Zhang(章乐)2, Fei Gao(高飞)1
1 College of Computer Science & Technology, Zhejiang University of Technology, Hangzhou 310023, China;
2 Centre for THz Research, China Jiliang University, Hangzhou 310018, China
Abstract  We propose and numerically demonstrate a compact terahertz wave switch which is composed of two graphene waveguides and three graphene ring resonators. Changing the bias voltage of the Fermi level in the center graphene ring, the resonant mode can be tuned when the plasmon waves in the waveguides and rings are coupled. We theoretically explain their mechanisms as being due to bias voltage change induced carrier density of graphene modification and the coupling coefficients of graphene plasmon effect after carrier density change, respectively. The mechanism of such a terahertz wave switch is further theoretically analyzed and numerically investigated with the aid of the finite element method. With an appropriate design, the proposed device offers the opportunity to ‘tune’ the terahertz wave ON-OFF with an ultra-fast, high extinction ratio and compact size. This structure has the potential applications in terahertz wave integrated circuits.
Keywords:  graphene      terahertz wave switch      surface plasmon  
Received:  25 March 2016      Revised:  26 May 2016      Accepted manuscript online: 
PACS:  87.50.U-  
  96.12.kc (Surface materials and properties)  
Fund: Project supported by the Public Technology Research Project of Zhejiang Province, China (Grant No. 2015C31116).
Corresponding Authors:  Le Zhang     E-mail:  zhangle85@foxmail.com

Cite this article: 

Jian-Zhong Sun(孙建忠), Le Zhang(章乐), Fei Gao(高飞) Ultra-compact terahertz switch with graphene ring resonators 2016 Chin. Phys. B 25 108701

[1] Jepsen P, Cooke D and Koch M 2011 Laser Photon. Rev. 5 124
[2] Federici J and Moeller L 2010 J. Appl. Phys. 107 111101
[3] Tonouchi M 2007 Nat. Photon. 1 97
[4] Hung H, Wu C and Chang S 2011 J. Appl. Phys. 110 093110
[5] Lin W, Wu C, Yang T and Chang S 2010 Opt. Express 18 27155
[6] Woo J, Kim M, Kim H and Jang J 2014 Appl. Phys. Lett. 104 081106
[7] Lin X, Wu J, Hu W, Zheng Z, Wu Z, Zhu G, Xu F, Jin B and Lu Y 2011 AIP Advances 1 032133
[8] Li J and Yao J 2008 Opt. Commun. 281 5697
[9] Zhang H, Guo P, Chen P, Chang S and Yuan J 2009 J. Opt. Soc. Am. B 26 101
[10] Yuan Y, He J, Liu J and Yao J 2010 Appl. Opt. 49 6092
[11] Gan C, Chu H and Li E 2012 Phys.Rev. B 85 125431
[12] Vakil A and Engheta N 2011 Science 332 1291
[13] Ding G W, Liu S B, Zhang H F, Kong X K, Li H M, Li B X, Liu S Y and Li H 2015 Chin. Phys. B 24 118103
[14] Lee S H, Choi M, Kim T, Lee S, Liu M, Yin X, Choi H, Lee S S, Choi C, Choi S, Zhang X and Min B 2012 Nat. Matser 11 936
[15] Liu M, Yin X, Ulin-Avila E, Geng B, Zentgraf T, Ju L, Wang F and Zhang X 2011 Nature 474 64
[16] Alaee R, Farhat M, Rockstuhl C and Lederer F 2012 Opt. Express 20 28017
[17] Zhu X, Yan W, Mortensen N and Xiao S 2013 Opt. Express 21 3486
[18] Cheng H, Chen S, Yu P, Liu W, Li Z, Li J, Xie B and Tian J 2015 Adv. Opt. Mater. 3 1744
[19] Cheng H, Chen S, Yu P, Li J, Xie B, Li Z and Tian J 2013 Appl. Phys. Lett. 103 223102
[20] Cheng H, Chen S, Yu P, Duan X, Xie B and Tian J 2013 Appl. Phys. Lett. 103 203112
[21] Cheng H, Chen S, Yu P, Li J, Deng L and Tian J 2013 Opt. Lett. 38 1567
[22] Huang Z, Wang L, Sun B, He M, Liu J, Li H and Zhai X 2014 J. Opt. 16 105004
[23] Dawlaty J, Shivaraman S, Chandrashekhar M, Rana F and Spencer M 2008 Appl. Phys. Lett. 92 042116
[24] Brar V, Jang M, Sherrott M, Lopez J and Atwater H 2013 Nano Lett. 13 2541
[25] Yan H, Low T, Zhu W, Wu Y, Freitag M, Li X, Guinea F, Avouris P and Xia F 2013 Nat. Photon. 7 394
[26] Koppens F, Chang D and García A 2011 Nano Lett. 11 3370
[27] Zhang Y, Liu T, Meng B, Li X, Liang G, Hu X and Wang Q 2013 Nat. Commun. 4 1811
[28] Liu P, Cai W, Wang L, Zhang X and Xu J 2012 Appl. Phys. Lett. 100 153111
[29] Xia S, Zhai X, Wang L, Lin Q and Wen S 2016 Opt. Express 24 427
[30] Smith D, Lepeshkin N, Schweinsberg A, Gehring G, Boyd R, Park Q, Chang H and Jackson D 2006 Opt. Commun. 264 163
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[3] Fiber cladding dual channel surface plasmon resonance sensor based on S-type fiber
Yong Wei(魏勇), Xiaoling Zhao(赵晓玲), Chunlan Liu(刘春兰), Rui Wang(王锐), Tianci Jiang(蒋天赐), Lingling Li(李玲玲), Chen Shi(石晨), Chunbiao Liu(刘纯彪), and Dong Zhu(竺栋). Chin. Phys. B, 2023, 32(3): 030702.
[4] Numerical simulation of a truncated cladding negative curvature fiber sensor based on the surface plasmon resonance effect
Zhichao Zhang(张志超), Jinhui Yuan(苑金辉), Shi Qiu(邱石), Guiyao Zhou(周桂耀), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), and Xinzhu Sang(桑新柱). Chin. Phys. B, 2023, 32(3): 034208.
[5] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[6] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[7] Chiral lateral optical force near plasmonic ring induced by Laguerre-Gaussian beam
Ying-Dong Nie(聂英东), Zhi-Guang Sun(孙智广), and Yu-Rui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(1): 018702.
[8] Correlated states in alternating twisted bilayer-monolayer-monolayer graphene heterostructure
Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(1): 017202.
[9] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[10] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[11] Recent advances of defect-induced spin and valley polarized states in graphene
Yu Zhang(张钰), Liangguang Jia(贾亮广), Yaoyao Chen(陈瑶瑶), Lin He(何林), and Yeliang Wang(王业亮). Chin. Phys. B, 2022, 31(8): 087301.
[12] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
[13] Longitudinal conductivity in ABC-stacked trilayer graphene under irradiating of linearly polarized light
Guo-Bao Zhu(朱国宝), Hui-Min Yang(杨慧敏), and Jie Yang(杨杰). Chin. Phys. B, 2022, 31(8): 088102.
[14] Dynamically tunable multiband plasmon-induced transparency effect based on graphene nanoribbon waveguide coupled with rectangle cavities system
Zi-Hao Zhu(朱子豪), Bo-Yun Wang(王波云), Xiang Yan(闫香), Yang Liu(刘洋), Qing-Dong Zeng(曾庆栋), Tao Wang(王涛), and Hua-Qing Yu(余华清). Chin. Phys. B, 2022, 31(8): 084210.
[15] Effect of surface plasmon coupling with radiating dipole on the polarization characteristics of AlGaN-based light-emitting diodes
Yi Li(李毅), Mei Ge(葛梅), Meiyu Wang(王美玉), Youhua Zhu(朱友华), and Xinglong Guo(郭兴龙). Chin. Phys. B, 2022, 31(7): 077801.
No Suggested Reading articles found!