Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(10): 107101    DOI: 10.1088/1674-1056/25/10/107101
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Electronic structures and edge effects of Ga2S2 nanoribbons

Bao-Ji Wang(王宝基)1, Xiao-Hua Li(李晓华)1, Li-Wei Zhang(张利伟)1, Guo-Dong Wang(王国东)1, San-Hang Ke(柯三黄)2,3
1 School of Physics and Electronic Information Engineering, Henan Polytechnic University, Jiaozuo 454000, China;
2 MOE Key Labortoray of Microstructured Materials, School of Physics Science and Engineering, Tonji University, Shanghai 200092, China;
3 Beijing Computational Science Research Center, Beijing 100094, China
Abstract  Ab initio density functional theory calculations are carried out to predict the electronic properties and relative stability of gallium sulfide nanoribbons (Ga2S2-NRs) with either zigzag- or armchair-terminated edges. It is found that the electronic properties of the nanoribbons are very sensitive to the edge structure. The zigzag nanoribbons (Ga2S2-ZNRs) are ferromagnetic (FM) metallic with spin-polarized edge states regardless of the H-passivation, whereas the bare armchair ones (Ga2S2-ANRs) are semiconducting with an indirect band gap. This band gap exhibits an oscillation behavior as the width increases and finally converges to a constant value. Similar behavior is also found in H-saturated Ga2S2-ANRs, although the band gap converges to a larger value. The relative stabilities of the bare ANRs and ZNRs are investigated by calculating their binding energies. It is found that for a similar width the ANRs are more stable than the ZNRs, and both are more stable than some Ga2S2 nanoclusters with stable configurations.
Keywords:  density functional theory      Ga2S2 nanoribbon      electronic structure      edge effect  
Received:  17 February 2016      Revised:  21 June 2016      Accepted manuscript online: 
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  73.20.At (Surface states, band structure, electron density of states)  
  73.21.Ac (Multilayers)  
  74.20.Pq (Electronic structure calculations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11174220 and 11374226), the Key Scientific Research Project of the Henan Institutions of Higher Learning (Grant No. 16A140009), the Program for Innovative Research Team of Henan Polytechnic University (Grant Nos. T2015-3 and T2016-2), and the Doctoral Foundation of Henan Polytechnic University (Grant No. B2015-46).
Corresponding Authors:  San-Hang Ke     E-mail:  shke@tongji.edu.cn

Cite this article: 

Bao-Ji Wang(王宝基), Xiao-Hua Li(李晓华), Li-Wei Zhang(张利伟), Guo-Dong Wang(王国东), San-Hang Ke(柯三黄) Electronic structures and edge effects of Ga2S2 nanoribbons 2016 Chin. Phys. B 25 107101

[1] Nakada K, Fujita M, Dresselhaus G and Dresselhaus M S 1996 Phys. Rev. B 54 17954
[2] Zhao H, Min K and Aluru N R 2009 Plasmonics 9 3012
[3] Li J, Yang S Y and Li S S 2015 Chin. Phys. Lett. 32 077102
[4] Son Y W, Cohen M L and Louie S G 2006 Phys. Rev. Lett. 97 216803
[5] Okada S and Oshiyama A 2001 Phys. Rev. Lett. 87 146803
[6] Son Y W, Cohen M L and Loui S G 2006 nature 444 347
[7] Xu M S, Liang T, Shi M M and Chen H Z 2013 Chem. Rev. 113 3766
[8] Tang Q, Zhou Z and Chen Z F 2015 WIREs Comput Mol Sci 5 360
[9] Chen F, Chen Y P, Zhang M and Zhong J X 2010 Chin. Phys. B 19 086105
[10] Nakamura J, Nitta T and Natori A 2005 Phys. Rev. B 72 205429
[11] Du A, Smith S C and Lu G 2007 Chem. Phys. Lett. 447 181
[12] Li Y F, Zhou Z, Zhang S B and Chen Z F 2008 J. Am. Chem. Soc. 130 16793
[13] Ho C H and Lin S L 2006 J. Appl. Phys. 100 083508
[14] Shen G Z, Chen D, Chen P C and Zhou C W 2009 ACS Nano 3 1115
[15] Late D J, Liu B, Luo J, Yan A, Ramakrishna M H S S, Grayson M, Rao C N R and Dravid V P 2012 Advanced Materials 24 3549
[16] Tang Q and Zhou Z 2013 Progress in Materials Science 111 1244
[17] Zólyomi V, Drummond N D and Fal'ko V I 2013 Phys. Rev. B 87 195403
[18] Wakabayashi K, Fujita M, Ajiki H and Sigrist M 1999 Phys. Rev. B 59 8271
[19] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[20] Blöchl P E 1994 Phys. Rev. B 50 17953
[21] Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J and Fiolhais C 1992 Phys. Rev. B 46 6671
[22] Perdew J P and Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[23] Köhler Th, Frauenheim Th, Hajnal Z and Seifert G 2004 Phys. Rev. B 69 193403
[24] Ataca C, Şahin H, Aktürk E and Ciraci S 2011 J. Phys. Chem. C 115 3934
[25] Pan H and Zhang Y W 2012 J. Mater. Chem. 22 7280
[26] Park C H and Louie S G 2008 Nano Lett. 8 2200
[27] Cai Y Q, Zhang G and Zhang Y W 2014 J. Am. Chem. Soc. 136 6269
[28] Sevincli H, Topsakal M and Ciraci S 2008 Phys. Rev. B 78 245402
[29] Dwivedi A, Pandey A K and Misra N 2012 J. Comput. Methods Mol. Des. 2 68
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[3] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[4] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[5] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[6] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[7] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[8] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[9] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[10] Collision site effect on the radiation dynamics of cytosine induced by proton
Xu Wang(王旭), Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), and Chao-Yi Qian (钱超义). Chin. Phys. B, 2022, 31(6): 063401.
[11] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[12] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[13] Laser-induced fluorescence experimental spectroscopy and theoretical calculations of uranium monoxide
Xi-Lin Bai(白西林), Xue-Dong Zhang(张雪东), Fu-Qiang Zhang(张富强), and Timothy C Steimle. Chin. Phys. B, 2022, 31(5): 053301.
[14] Measurement of electronic structure in van der Waals ferromagnet Fe5-xGeTe2
Kui Huang(黄逵), Zhenxian Li(李政贤), Deping Guo(郭的坪), Haifeng Yang(杨海峰), Yiwei Li(李一苇),Aiji Liang(梁爱基), Fan Wu(吴凡), Lixuan Xu(徐丽璇), Lexian Yang(杨乐仙), Wei Ji(季威),Yanfeng Guo(郭艳峰), Yulin Chen(陈宇林), and Zhongkai Liu(柳仲楷). Chin. Phys. B, 2022, 31(5): 057404.
[15] Temperature dependence of bismuth structures under high pressure
Xiaobing Fan(范小兵), Shikai Xiang(向士凯), and Lingcang Cai(蔡灵仓). Chin. Phys. B, 2022, 31(5): 056101.
No Suggested Reading articles found!