Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(10): 104701    DOI: 10.1088/1674-1056/25/10/104701
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Pseudopotential multi-relaxation-time lattice Boltzmann model for cavitation bubble collapse with high density ratio

Ming-Lei Shan(单鸣雷)1,2, Chang-Ping Zhu(朱昌平)1,2, Cheng Yao(姚澄)1, Cheng Yin(殷澄)1, Xiao-Yan Jiang(蒋小燕)1
1 College of Internet of Things Engineering, Hohai University, Changzhou 213022, China;
2 Jiangsu Key Laboratory of Power Transmission and Distribution Equipment Technology, Hohai University, Changzhou 213022, China
Abstract  The dynamics of the cavitation bubble collapse is a fundamental issue for the bubble collapse application and prevention. In the present work, the modified forcing scheme for the pseudopotential multi-relaxation-time lattice Boltzmann model developed by Li Q et al. [ Li Q, Luo K H and Li X J 2013 Phys. Rev. E 87 053301] is adopted to develop a cavitation bubble collapse model. In the respects of coexistence curves and Laplace law verification, the improved pseudopotential multi-relaxation-time lattice Boltzmann model is investigated. It is found that the thermodynamic consistency and surface tension are independent of kinematic viscosity. By homogeneous and heterogeneous cavitation simulation, the ability of the present model to describe the cavitation bubble development as well as the cavitation inception is verified. The bubble collapse between two parallel walls is simulated. The dynamic process of a collapsing bubble is consistent with the results from experiments and simulations by other numerical methods. It is demonstrated that the present pseudopotential multi-relaxation-time lattice Boltzmann model is applicable and efficient, and the lattice Boltzmann method is an alternative tool for collapsing bubble modeling.
Keywords:  lattice Boltzmann method      pseudopotential model      bubble collapse      improved forcing scheme  
Received:  22 March 2016      Revised:  04 May 2016      Accepted manuscript online: 
PACS:  47.11.Qr (Lattice gas)  
  47.55.Ca (Gas/liquid flows)  
  47.55.dd (Bubble dynamics)  
  47.55.dp (Cavitation and boiling)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11274092 and 1140040119) and the Natural Science Foundation of Jiangsu Province, China (Grant No. SBK2014043338).
Corresponding Authors:  Chang-Ping Zhu     E-mail:  cpzhu5126081@163.com

Cite this article: 

Ming-Lei Shan(单鸣雷), Chang-Ping Zhu(朱昌平), Cheng Yao(姚澄), Cheng Yin(殷澄), Xiao-Yan Jiang(蒋小燕) Pseudopotential multi-relaxation-time lattice Boltzmann model for cavitation bubble collapse with high density ratio 2016 Chin. Phys. B 25 104701

[1] Brennen C E 2005 Fundamentals of Multiphase Flow (New York: Cambridge University Press) pp. 19-22
[2] Hashmi A, Yu G, Reilly-Collette M, Heiman G and Xu J 2012 Lab Chip 12 4216
[3] Azam F I, Karri B, Ohl S W, Klaseboer E and Khoo B C 2013 Phys. Rev. E 88 043006
[4] Xu Z, Yasuda K and Liu X J 2015 Chin. Phys. B 24 104301
[5] van Wijngaarden L 2016 Ultrason. Sonochem. 29 524
[6] Chau S W, Hsu K L, Kouh J S and Chen Y J 2004 J. Mar. Sci. Technol. 8 147
[7] Cai J, Li X, Liu B and Huai X 2014 Chin. Sci. Bull. 59 1580
[8] Liu B, Cai J, Huai X L and Li F C 2013 J. Heat Trans-T. ASME 136 022901
[9] Hsu C Y, Liang C C, Nguyen A T and Teng T L 2014 Ocean. Eng. 81 29
[10] Zhang A M and Liu Y L 2015 J. Comput. Phys. 294 208
[11] Samiei E, Shams M and Ebrahimi R 2011 Eur. J. Mech. B-Fluid 30 41
[12] Sussman M 2003 J. Comput. Phys. 187 110
[13] He Y L, Wang Y and Li Q 2009 Lattice Boltzmann method: theory and applications (Beijing: Science Press) pp. 1-10 (in Chinese)
[14] Succi S 2001 The lattice Boltzmann equation for fluid dynamics and beyond (Oxford: Clarendon) pp. 40-50
[15] Huang H, Sukop M and Lu X 2015 Multiphase Lattice Boltzmann Methods: Theory and Application (Oxford: John Wiley & Sons) pp. 1-3
[16] Li Q, Luo K H, Kang Q J, He Y L, Chen Q and Liu Q 2016 Prog. Energ. Combust. 52 62
[17] Xu A G, Zhang G C, Li Y J and Li H 2014 Prog. Phys. 34 136 (in Chinese)
[18] Chen L, Kang Q, Mu Y, He Y L and Tao W Q 2014 Int. J. Heat Mass. Trans. 76 210
[19] Chen S Y and Doolen G D 1998 Ann. Rev. Fluid Mech. 30 329
[20] Gunstensen A K, Rothman D H, Zaleski S and Zanetti G 1991 Phys. Rev. A 43 4320
[21] Shan X W and Chen H D 1993 Phys. Rev. E 47 1815
[22] Shan X and Chen H 1994 Phys. Rev. E 49 2941
[23] Swift M R, Osborn W R and Yeomans J M 1995 Phys. Rev. Lett. 75 830
[24] Swift M R, Orlandini E, Osborn W and Yeomans J 1996 Phys. Rev. E 54 5041
[25] He X Y, Chen S Y and Zhang R Y 1999 J. Comput. Phys. 152 642
[26] Sukop M and Or D 2005 Phys. Rev. E 71 046703
[27] Chen X P, Zhong C W and Yuan X L 2011 Comput. Math. Appl. 61 3577
[28] Mishra S K, Deymier P A, Muralidharan K, Frantziskonis G, Pannala S and Simunovic S 2010 Ultrason. Sonochem. 17 258
[29] Daemi M, Taeibi-Rahni M and Massah H 2015 Chin. Phys. B 24 024302
[30] Kupershtokh A L, Medvedev D A and Karpov D I 2009 Comput. Math. Appl. 58 965
[31] Huang H B, Krafczyk M and Lu X 2011 Phys. Rev. E 84 046710
[32] Li Q, Luo K H and Li X J 2012 Phys. Rev. E 86 016709
[33] Li Q, Luo K H and Li X J 2013 Phys. Rev. E 87 053301
[34] Xie H Q, Zeng Z and Zhang L Q 2016 Chin. Phys. B 25 014702
[35] Song B W, Ren F, Hu H B and Huang Q G 2015 Chin. Phys. B 24 014703
[36] Shan X W 2008 Phys. Rev. E 77 066702
[37] Sbragaglia M and Shan X W 2011 Phys. Rev. E 84 036703
[38] Yuan P and Schaefer L 2006 Phys. Fluids 18 042101
[39] Or D and Tuller M 2002 Water Resour. Res. 38 19
[40] Plesset M S and Chapman R B 1971 J. Fluid. Mech. 47 283
[41] Brujan E A, Keen G S, Vogel A and Blake J R 2002 Phys. Fluids 14 85
[42] Lauer E, Hu X Y, Hickel S and Adams N A 2012 Comput. Fluids 69 1
[43] Liu B, Cai J and Huai X L 2014 Int. J. Heat Mass. Trans. 78 830
[44] Ishida H, Nuntadusit C, Kimoto H, Nakagawa T and Yamamoto T 2001 CAV 2001: Fourth International Symposium on Cavitation, June 20-23, 2001, Pasadena, USA, p. A5 003
[1] Inertial focusing and rotating characteristics of elliptical and rectangular particle pairs in channel flow
Pei-Feng Lin(林培锋), Xiao Hu(胡箫), and Jian-Zhong Lin(林建忠). Chin. Phys. B, 2022, 31(8): 080501.
[2] Hemodynamics of aneurysm intervention with different stents
Peichan Wu(吴锫婵), Yuhan Yan(严妤函), Huan Zhu(朱欢), Juan Shi(施娟), and Zhenqian Chen(陈振乾). Chin. Phys. B, 2022, 31(6): 064701.
[3] Effect of viscosity on stability and accuracy of the two-component lattice Boltzmann method with a multiple-relaxation-time collision operator investigated by the acoustic attenuation model
Le Bai(柏乐), Ming-Lei Shan(单鸣雷), Yu Yang(杨雨), Na-Na Su(苏娜娜), Jia-Wen Qian(钱佳文), and Qing-Bang Han(韩庆邦). Chin. Phys. B, 2022, 31(3): 034701.
[4] Lattice Boltzmann model for interface capturing of multiphase flows based on Allen-Cahn equation
He Wang(王贺), Fang-Bao Tian(田方宝), and Xiang-Dong Liu(刘向东). Chin. Phys. B, 2022, 31(2): 024701.
[5] Investigation of cavitation bubble collapse in hydrophobic concave using the pseudopotential multi-relaxation-time lattice Boltzmann method
Minglei Shan(单鸣雷), Yu Yang(杨雨), Xuemeng Zhao(赵雪梦), Qingbang Han(韩庆邦), and Cheng Yao(姚澄). Chin. Phys. B, 2021, 30(4): 044701.
[6] Effect of non-condensable gas on a collapsing cavitation bubble near solid wall investigated by multicomponent thermal MRT-LBM
Yu Yang(杨雨), Ming-Lei Shan(单鸣雷), Qing-Bang Han(韩庆邦), and Xue-Fen Kan(阚雪芬). Chin. Phys. B, 2021, 30(2): 024701.
[7] Modeling of microporosity formation and hydrogen concentration evolution during solidification of an Al-Si alloy
Qingyu Zhang(张庆宇), Dongke Sun(孙东科), Shunhu Zhang(章顺虎), Hui Wang(王辉), Mingfang Zhu(朱鸣芳). Chin. Phys. B, 2020, 29(7): 078104.
[8] A mass-conserved multiphase lattice Boltzmann method based on high-order difference
Zhang-Rong Qin(覃章荣), Yan-Yan Chen(陈燕雁), Feng-Ru Ling(凌风如), Ling-Juan Meng(孟令娟), Chao-Ying Zhang(张超英). Chin. Phys. B, 2020, 29(3): 034701.
[9] Boundary scheme for lattice Boltzmann modeling of micro-scale gas flow in organic-rich pores considering surface diffusion
Hong Zuo(左鸿), Shou-Chun Deng(邓守春), Hai-Bo Li(李海波). Chin. Phys. B, 2019, 28(3): 030202.
[10] Dynamics of a self-propelled particle under different driving modes in a channel flow
Zhenyu Ouyang(欧阳振宇), Jianzhong Lin(林建忠), Xiaoke Ku(库晓珂). Chin. Phys. B, 2017, 26(1): 014701.
[11] Numerical modeling of condensate droplet on superhydrophobic nanoarrays using the lattice Boltzmann method
Qing-Yu Zhang(张庆宇), Dong-Ke Sun(孙东科), You-Fa Zhang(张友法), Ming-Fang Zhu(朱鸣芳). Chin. Phys. B, 2016, 25(6): 066401.
[12] Development of a new correlation to calculate permeability for flows with high Knudsen number
Esmaeil Dehdashti. Chin. Phys. B, 2016, 25(2): 024702.
[13] Three-dimensional multi-relaxation-time lattice Boltzmann front-tracking method for two-phase flow
Hai-Qiong Xie(谢海琼), Zhong Zeng(曾忠), Liang-Qi Zhang(张良奇). Chin. Phys. B, 2016, 25(1): 014702.
[14] A multiple-relaxation-time lattice Boltzmann method for high-speed compressible flows
Li Kai (李凯), Zhong Cheng-Wen (钟诚文). Chin. Phys. B, 2015, 24(5): 050501.
[15] Lattice Boltzmann simulation of liquid–vapor system by incorporating a surface tension term
Song Bao-Wei (宋保维), Ren Feng (任峰), Hu Hai-Bao (胡海豹), Huang Qiao-Gao (黄桥高). Chin. Phys. B, 2015, 24(1): 014703.
No Suggested Reading articles found!